下载此文档

数据挖掘实验四-RBF神经网络报告23.doc


文档分类:IT计算机 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
华南师范大学实验报告
学生姓名: 楚鹤鸣学号: 20123100146
专业: 通信工程班级: 12 通信工程 7 班
实验项目:实验四 RBF神经网络
一、实验目的
通过计算机编程实现并验证RBF神经网络的曲线拟合及模式分类能力。
二、实验内容
1)用Matlab实现RBF神经网络,并对给定的曲线样本集实现拟合;
2)通过改变实验参数,观察和分析影响RBF神经网络的结果与收敛速度的因素;
三、实验原理、方法和手段
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
正则化RBF网络
输入样本有P个时,隐藏层神经元数目为P,且第p个神经元采用的变换函数为G(X,Xp),它们相同的扩展常数σ。输出层神经元直接把净输入作为输出。输入层到隐藏层的权值全设为1,隐藏层到输出层的权值是需要训练得到的:逐一输入所有的样本,计算隐藏层上所有的Green函数,根据(2)式计算权值。
广义RBF网络
Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。
广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。
注意广义RBF网络只要求隐藏层神经元个数大于输入层神经元个数,并没有要求等于输入样本个数,实际上它比样本数目要少得多。因为在标准RBF网络中,当样本数目很大时,就需要很多基函数,权值矩阵就会很大,计算复杂且容易产生病态问题。另外广RBF网与传统RBF网相比,还有以下不同:
径向基函数的中心不再限制在输入数据点上,而由训练算法确定。
各径向基函数的扩展常数不再统一,而由训练算法确定。
输出函数的线性变换中包含阈值参数,用于补偿基函数在样本集上的平均值与目标值之间的差别。
因此广义RBF网络的设计包括:
结构设计--隐藏层含有几个节点合适
参数设计--各基函数的数据中心及扩展常数、输出节点的权值。
下面给出计算数据中心的两种方法:
数据中心从样本中选取。样本密集的地方多采集一些。各基函数采用统一的偏扩展常数:
dmax是所选数据中心之间的最大距离,M是数据中心的个数。扩展常数这么计算是为了避免径向基函数太尖或太平。
自组织选择法,比如对样本进行聚类、梯度训练法、资源分配网络等。各聚类中心确定以后,根据各中心之间的距离确定对应径向基函数的扩展常数。
λ是重叠系数。
接下来求权值W时就不能再用了,因为对于广义RBF网络,其行数大于列数,此时可以求Φ伪逆。
 数据中心的监督学习算法
最一般的情况,RBF函数中心、扩展常数、输出权值都应该采用监督学习算法进行训练,经历一个误差修正学习的过程,与BP网络的学习原理一样。同样采用梯度下降法,定义目标函数为
ei为输入第i个样本时的误差信号。
上式的输出函数中忽略了阈值。
为使目标函数最小化,各参数的修正量应与其负梯度成正比,即
具体计算式为

数据挖掘实验四-RBF神经网络报告23 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人Q+1243595614
  • 文件大小127 KB
  • 时间2018-06-10
最近更新