下载此文档

高中数学必修一函数大题.doc


文档分类:中学教育 | 页数:约13页 举报非法文档有奖
1/13
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/13 下载此文档
文档列表 文档介绍
高中函数大题专练
2、对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有;
②当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。
.
(1)若,求的值;
(2)若对于恒成立,求实数的取值范围.
,
(1)求在上的解析式.
(2)请你作出函数的大致图像.
(3)当时,若,求的取值范围.
(4)若关于的方程有7个不同实数解,求满足的条件.

(1)若函数是上的增函数,求实数的取值范围;
(2)当时,若不等式在区间上恒成立,求实数的取值范围;
(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
:
①对于任意正实数、,都有;
②;
③当时,总有.
(1)求的值;
(2)求证:上是减函数.
10. 已知函数是定义在上的奇函数,当时,(为常数)。
(1)求函数的解析式;
(2)当时,求在上的最小值,及取得最小值时的,并猜想在上的单调递增区间(不必证明);
(3)当时,证明:函数的图象上至少有一个点落在直线上。
,的定义域为,
(1)求:
(2)若,求、的取值范围
12、设。
(1)求的反函数:
(2)讨论在上的单调性,并加以证明:
(3)令,当时,在上的值域是,求的取值范围。
:
(1) 函数的定义域是;
(2) 函数的值域是;
(3) :
(Ⅰ)判断函数,及是否属于集合A?并简要说明理由.
(Ⅱ)对于(I)中你认为属于集合A的函数,不等式,是否对于任意的总成立?若不成立,为什么?若成立,请证明你的结论.
14、设函数f(x)=ax+bx+1(a,b为实数),F(x)=
(1)若f(-1)=0且对任意实数x均有f(x)成立,求F(x)表达式。
(2)在(1)的条件下,当x时,g(x)=f(x)-kx是单调函数,求实数k的取值范围。
(3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。
(x)=(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。
(1)求a、b的值;
(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?
(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。
函数大题专练答案
2、对定义在上,并且同时满足以下两个条件的函数称为函数。
①对任意的,总有;
②当时,总有成立。
已知函数与是定义在上的函数。
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,讨论方程解的个数情况。
解:(1) 当时,总有,满足①,
当时,
,满足②
(2)若时,不满足①,所以不是函数;
若时,在上是增函数,则,满足①
由,得,
即,
因为
所以与不同时等于1

当时, ,
综合上述:
(3)根据(2)知: a=1,方程为,
由得
令,则
由图形可知:当时,有一解;
当时,方程无解。
.
(1)若,求的值;
(2)若对于恒成立,求实数的取值范围.
[解] (1)当时,;当时,.
由条件可知,即,
解得.
,.
(2)当时,,
即.
, .
,
故的取值范围是.
,
(1)求在上的解析式.
(2)请你作出函数的大致图像.
(3)当时,若,求的取值范围.
(4)若关于的方程有7个不同实数解,求满足的条件.
[解](1)当时,.
(2)的大致图像如下:.
(3)因为,所以
,
解得的取值范围是.
(4)由(2),对于方程,当时,方程有3个根;当时,方程有4个根,当时,方程有2个根;当时,方程无解.…15分
所以,要使关于的方程有7个不同实数解,关于的方程有一个在区间的正实数根和一个等于零的根。
所以,即.

(1)若函数是上的增函数,求实数的取值范围;
(2)当时,若不等式在区间上恒成立,求实数的取值范围;
(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。
解:(1) 当时

高中数学必修一函数大题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数13
  • 收藏数0 收藏
  • 顶次数0
  • 上传人资料分享
  • 文件大小583 KB
  • 时间2018-07-03
最近更新