三线八角
教学目标
1使学生理解三线八角的意义,并能从复杂图形中识别它们
2通过三线八角的特点的分析,培养学生抽象概括问题的能力
3使学生认识图形是由简到繁组合而成,培养学生形成基本图形的结构的能力
教学重点和难点
三线八角的意义是重点,能在各种变式的图形中找出这三类角既是重点,也是难点
教学过程设计
一、从学生原有的认识结构提出问题
教师提问:
1两条直线相交后产生了几个角?每两个角之间的关系是什么?(除平角外,产生四个角,对顶角相等,邻补角互补)
2三条直线之间也可以有什么样的位置关系?(可以让学生用手中的铅笔表示直线)在学生回答的基础上,教师打出投影,(四种情况,如图2—30)
(1)三条直线都没有交点
(2)两条直线平行被第三条直线所截
(3)三条直线两两相交,有三个交点
(4)三条直线交于一点
上节课是对相交的两条直线所形成的四个角进行研究,今天我们就对三条直线相交后形成的八个角如图2—30(3)进行研究,简称为:三线八角(板书课题)
二、三线八角的意义
1教师用谈话方式提出问题:
在图2—31中,l1和l3(或l2和l3)所形成的四个角是有公共顶点的,而每两个角之间的关系从位置来分,可分为两类:对顶角和邻补角,而上面四个角和下面四个角是没有公共顶点的,那么上面的一个与下面的一个又有什么样的位置关系呢?这就是下面所要研究的问题
2分析特点,形成概念
(1)同位角的意义
先引导学生分析∠1和∠5有什么共同特点?
在学生回答的基础上,教师归纳总结出共同特点是:
均在直线l3的一侧,且分别在l1和l2的上方,像这样的两个角叫作同位角
请同学们指出:图中还有同位角吗?(答:∠2与∠6,∠4与∠8,∠3与∠7)
(2)内错角的意义
(3)同旁内角的意义
(这两种角的教法类似同位角,如果学生要问∠1和∠6,∠1和∠7是什么关系,可以简单说一下,不问也不说)
3变式练习,揭露概念本质属性
(1)如图2—32,说出以下各对角是哪两条直线被第三条直线所截而得到的?∠1与∠2,∠2与∠4,∠2与∠3
答:∠1与∠2是l2、l3被l1所截而得到的一对同旁内角
∠2与∠4是直线l2、l1被l3所截而得到的同旁内角
∠2与∠3是l2、l1被l3所截而得到的同位角
(2)如图2—33,找出下列图中的同位角,内错角和同旁内角
答:同位角有:∠2与∠3,∠4与∠7,∠4与∠8;内错角有∠1与∠3,∠6与∠8,∠6与∠7;同旁内角有∠3与∠8,∠1与∠4
(3)如图2—34,指出图中∠1与∠2,∠3与∠4的关系
答:∠1与∠2是内错角,∠3与∠4也是内错角
4正确识别这三类角应注意的问题
(1)识别这三类角首先要抓住“三条线”,即:哪两条线被哪一条直线所截
(2)抓住“截线”,截线的同侧有哪些角、从中找出同位角和同旁内角,在截线的两侧找内错角
三、综合应用,课堂练习
1找出如图2—35中的对顶角和邻补角
答:对顶角有四对:它们是∠1与∠3,∠2与∠4,∠5与∠6,∠7与∠8;
邻补角有∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1,∠5与∠8,∠8与∠6,∠6与∠7,∠7与∠5
(还可以找出图2—35中相等
三线八角 来自淘豆网m.daumloan.com转载请标明出处.