禁忌搜索算法评述.doc禁忌搜索算法评述
摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法
1 引言
工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。优化算法主要分为启发式算法和智能随机算法。启发式算法依赖对问题性质的认识,属于局部优化算法。智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。禁忌搜索算法(Tabu Search, TS)最早是由Glover在1986年提出,它的实质是对局部邻域搜索的一种拓展。TS算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。TS算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化[1]。
迄今为止,TS算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经X络等领域,并显示出极好的研究前景[2~9,11~15]。目前关于TS的研究主要分为对TS算法过程和关键步骤的改进,用TS改进已有优化算法和应用TS相关算法求解工程优化问题三个方面。
禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。
2 禁忌搜索算法的基本流程
TS算法一般流程描述[1]:
(1)设定算法参数,产生初始解x,置空禁忌表。
(2)判断是否满足终止条件?若是,则结束,并输出结果;否则,继续以下步骤。
(3)利用当前解x的邻域结构产生邻域解,并从中确定若干候选解。
(4)对候选解判断是否满足藐视准则?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,并用y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换
“best so far”状态,然后转步骤(6);否则,继续以下步骤。
(5)判断候选解对应的各对象的禁忌情况,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象。
(6)转步骤(2)。
算法可用图1所示的流程图更为直观的描述。
3 禁忌搜索算法中的关键设计
编码及初始解的构造
禁忌搜索算法首先要对待求解的问题进行抽象,分析问题解的形式以形成编码。禁忌搜索的过程就是在解的编码空间里找出代表最优解或近似优解的编码串。编码串的设计方式有多种策略,主要根据待解问题的特征而定。二进制编码将问题的解用一个二进制串来表示[2],十进制编码将问题的解用一个十进制串来表示[3],实数编码将问题的解用一个实数来表示[4],在
禁忌搜索算法评述 来自淘豆网m.daumloan.com转载请标明出处.