相似三角形的性质教案
一、教材分析:
教材的地位和作用:
“相似三角形”是指两个三角形之间的一种相互关系,但它与前面学过的“全等三角形”不同,这两个三角形仅仅是形状相同,大小不一定相同,其中一个三角形可以看成另一个三角形按一定比例放大或缩小而成的,当放大或缩小的比为“1”时,这两个三角形就是全等三角形,因而前面学过的全等三角形是相似三角形的特殊情况,从这个意义上讲,研究相似三角形比研究全等三角形更具有一般性,所以本节课所研究的相似三角形的性质实际上是在全等三角形的基础上的拓广和发展.
教学目的要求:
基础知识和基本技能:
掌握相似三角形的性质定理及其证明方法
2)能运用相似三角形性质定理解决问题.
B、能力培养:
通过师生实验,培养学生观察后的归纳推理能力.
2)通过相似三角形性质定理及应用的讲解,培养学生类比思想、归纳思想及特殊到一般的认识规律,拓展学生思维.
C、德育渗透:
1)通过全等三形与相似三角形的类比学习,树立学生从特殊到一般的认识规律.
2)通过先实验后归纳推理得出性质定理,强化学生“实践出真知”的求知意识.
注:在实现教学目标的教学过程中,遵循从感性到理性、从特殊到一般的原则,以符合初中学生的认知规律.
教学重点、难点、疑点:
本节课的重点是相似三角形性质定理的理解应用.
难点是相似三角形的性质归纳推理.
疑点是“相似比”与“相似比的平方”的区分.
二、学情分析:
学生在上学期已学过全等三角形,他们知道全等三角形的对应角相等、对应边相等、对应高线相等、对应角平分线相等、对应中线相等及周长相等、面积相等的事实,本节课的教学是从全等三角形的性质拓广到相似三角形的性质,从特殊到一般时,,教学中合理安排类比法进行教学有助于学生接受新知,对于学生难以理解的知识通过实验,、、恰如其分,提高学生听课效率.
三、教法分析:
1、本节课重点相似三角形的性质,教学从学生小组讨论猜想入手,再借助几何画板软件制作动态几何课件,进行演示实验,学生从切身的观察(感性认识)中归纳出相似三角形的性质,经师生共同推理上升为定理(理性认识).并紧扣“实验+推理”进行教学.
2、本课虽然是学习相似三角形的性质,实际上与全等三角形有着密切的联系,,从而引导学生由特殊到一般自主进行学习与认知.
3、本课难点,即相似三角形性质归纳推理,教学中紧扣定理的“前提”(相似三角形)和定理各自的“结论”(相似比或相似比的平方),利用课件做到图文并茂,逐个讲解以分化难点.
为培养学生探究问题的能力,在例题、习题编排中注重启发性,引导学生在解决问题前一定要分析问题,不是盲目的套用.
四、教学过程设计:
1、采用“类比讨论”引入新课.(约2分钟)
先回忆全等三角形有哪些性质?
(1)对应角相等.(2)对应边相等.(3)对应高、对应中线、对应角平分线相等.(4)周长相等.(5)面积相等.(课件逐一出示)
引导学生分组讨论:相似三角形对应角,对应边,对应高,对应中线,对应角平分线,周长,面积具有怎样的性质呢?
2、演示
24 画家乡作业设计 来自淘豆网m.daumloan.com转载请标明出处.