下载此文档

行程问题之相遇问题.ppt


文档分类:幼儿/小学教育 | 页数:约14页 举报非法文档有奖
1/14
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/14 下载此文档
文档列表 文档介绍
行程问题之
授课老师:刘斌
行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.
基本概念
基本公式
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题
确定运动过程中的位置和方向。
基本题型
已知路程、时间、速度(速度和、速度差)中任意两个量,求第三个量。
相遇问题
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。
小学数学教材中的行程问题,一般是指相遇问题。
相遇问题根据数量关系可分成三种类型:
求路程,求相遇时间,求速度。
它们的基本关系式如下:
总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
例1 甲、乙两车同时从A、B两地出发相向而行,,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?
例1 甲、乙两车同时从A、B两地出发相向而行,,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?
分析甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.
例1 甲、乙两车同时从A、B两地出发相向而行,,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?
解:①AB间的距离是
64×3-48
=192-48
=144(千米).
②两次相遇点的距离为
144—48-64
=32(千米).
答:两次相遇点的距离为32千米.
例2 甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?

分析甲的速度为乙的2倍,因此,乙走4小时的路,甲只要2小时就可以了,因此,甲走100千米所需的时间为(4—1+4÷2)=.
例2 甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?
解:甲的速度为:
100÷(4-1+4÷2)
=10O÷5=20(千米/小时).
乙的速度为:20÷2=10(千米/小时).
答:甲的速度为20千米/小时,乙的速度为10千米/小时.
例3 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,,错车而过需要几秒钟?

分析解这类应用题,首先应明确几个概念:,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,,错车时间就等于车长之和除以速度之和.
例3 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,,错车而过需要几秒钟?
列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为(250—210)米时,所用的时间为(25—23)(250—210)÷(25—23)=20(米/秒).再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250(米),从而可求出错车时间.

行程问题之相遇问题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数14
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xunlai783
  • 文件大小334 KB
  • 时间2018-07-15
最近更新