下载此文档

动态规划总结.doc


文档分类:建筑/环境 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
动态规划总结
by Amber
1.   按状态类型分
写在前面:
从状态类型分,并不表示一题只从属于一类。其实一类只是一种状态的表示方法。可以好几种方法组合成一个状态,来解决问题。
. 编号(长度)动态规划
共性总结
本类的状态是基础的基础,大部分的动态规划都要用到它,成为一个维。
一般来说,有两种编号的状态:
状态(i)表示前i个元素决策组成的一个状态。
状态(i)表示用到了第i个元素,和其他在1到i-1间的元素,决策组成有的一个状态。
题库
a)       最长不下降子序列
以一元组(i)作为状态,表示第i个作为序列的最后一个点的时候的最长序列。于是很容易想到O(n2)得算法。但本题可合理组织状态,引入一个单调的辅助数组,利用单调性二分查找,优化到O(nlogn)。关于优化详见优化章。
一些问题可将数据有序化,转化成本题。
应用:
拦截导弹(NOIP99 Advance 1) 就是原题。
Beautiful People (sgu199),要将数据有序化:其中一个权作为第一关键字不下降排列,另一个权作为第二关键字不上升。
Segment (ural 1078),将线段的左端点有序化就可以了。
b)      LCS
状态(i,j),表示第1个字符串的第i位,与第2个字符串的第j位匹配,得到的最长的串。若有多个串要LCS,则加维,即几个串就几个维。我也将此题归入路径问题。
c)      花店橱窗布置(IOI99)
见路径问题。
. 区间动态规划
共性总结
本类问题与下一章的划分问题的决策的分割点无序交集比较大(占本类问题的30%)。
题库
a)       石子合并
见划分问题
b)      模版匹配(CEOI01,Patten)
这题特殊的地方是状态的值是一个集合而不是一个数。
c)      不可分解的编码(ACM World Final 2002)
d)      Electric Path(ural1143)
e)       邮局(IOI2000 Day2 1)
若状态表示的思路从第i个村庄可以从属于哪个邮局,无最优子结构。转变一个方向:第k个邮局可以“控制”一个区间的村庄[i,j]。于是方程就显然了:
f(k,i,j)=min{f(k-1,p,i-1)+w(i,j)}(k-1<=p<=i-1)
S(i) 为村庄i到原点的距离。
w(i,j)=min{k| Sum{|S(k)-S(p)|}(i<=p<=j)}(i<=k<=j) 找到[i,j]间最好的一个邮局点。
不过可以发现Sum{|S(k)-S(p)|是单调的,所以取中位数就可以了。即上式中k的取值范围只有floor((i+j)/2), ceil((i+j)/2)两个。Floor是下取整。Ceil是上取整。这样每次转移时间降到O(1)。
注意到是区间连续的,即(p,i-1) 和(i, j) 中的 i-1, i是连续的,所以空间可以降维:f(i,j)表示放前i个邮局到前j个村庄的最优值。
f(i,j)=min{f(i-1,p-1)+w(p,j)}(i-1<=p<=j-1}
e(i,j) 为当f(i,j)到达最优值时的p.
通过证明四边形不等式,得到e(i,j)

动态规划总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人beny00011
  • 文件大小0 KB
  • 时间2015-07-01
最近更新