2012年高考真题理科数学解析分类汇编9
直线与圆
1.【2012高考重庆理3】任意的实数k,直线与圆的位置关系一定是
【答案】C
【解析】直线恒过定点,定点到圆心的距离,即定点在圆内部,所以直线与圆相交但直线不过圆心,选C.
2.【2012高考浙江理3】设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行的
A 充分不必要条件 B 必要不充分条件
C 充分必要条件 D 既不充分也不必要条件
【答案】A
【解析】当时,直线:,直线:,则//;若//,则有,即,解之得,或,所以不能得到。故选A.
4.【2012高考陕西理4】已知圆,过点的直线,则( )
B. 与相切 D. 以上三个选项均有可能
【答案】A.
【解析】圆的方程可化为,易知圆心为半径为2,圆心到点P的距离为1,.
5.【2012高考天津理8】设,若直线与圆相切,则m+n的取值范围是
(A) (B)
(C) (D)
【答案】D
【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.
【解析】圆心为,,所以圆心到直线的距离满足,即,设,即,解得或
6.【2012高考江苏12】(5分)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是▲.
【答案】。
【考点】圆与圆的位置关系,点到直线的距离
【解析】∵圆C的方程可化为:,∴圆C的圆心为,半径为1。
∵由题意,直线上至少存在一点,以该点为圆心,1为半径的圆与圆有
公共点;
∴存在,使得成立,即。
∵即为点到直线的距离,∴,解得。
∴的最大值是。
7.【2012高考全国卷理21】(本小题满分12分)
已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.
【命题意图】本试题考查了抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点到直线的距离。
解:(1)设,对求导得,故直线的斜率
,当时,不合题意,所心
圆心为,的斜率
由知,即,解得,故
所以
(2)设为上一点,则在该点处的切线方程为即
若该直线与圆相切,则圆心到该切线的距离为,即,化简可得
求解可得
抛物线在点处的切线分别为,其方程分别为
①②③
②-③得,将代入②得,故
所以到直线的距离为。
【点评】该试题出题的角度不同于平常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。另外对于在第二问中更是难度加大了,出现了另外的两条公共的切线,这样的问题对于我们以后的学习也是一个需要练习的方向。
8.【2012高考湖南理21】(本小题满分13分)
在直角坐标系xOy中,曲线C1的点均在C2:(
2012年高考真题理科数学解析分类汇编9直线与圆 来自淘豆网m.daumloan.com转载请标明出处.