平面直角坐标系与点的坐标
选择题
1. (2014•海南,第8题3分)如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为( )
A.
(﹣4,6)
B.
(4,6)
C.
(﹣2,1)
D.
(6,2)
考点:
关于x轴、y轴对称的点的坐标..
分析:
根据关于y轴对称点的坐标特点:横坐标互为相反数,(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.
解答:
解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),
∴D(4,6).
故选:B.
点评:
此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.
2.(2014•四川绵阳,第7题3分)线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为( )
A.
(﹣8,﹣2)
B.
(﹣2,﹣2)
C.
(2,4)
D.
(﹣6,﹣1)
考点:
坐标与图形变化-平移
分析:
首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.
解答:
解:∵点P(﹣1,4)的对应点为E(4,7),
∴P点是横坐标+5,纵坐标+3得到的,
∴点Q(﹣3,1)的对应点N坐标为(﹣3+5,1+3),
即(2,4).
故选:C.
点评:
此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,个点的变化规律都相同.
3.(2014•黑龙江牡丹江, 第6题3分)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为( )
第1题图
A.(﹣x,y﹣2) B. (﹣x,y+2) C. (﹣x+2,﹣y) D. (﹣x+2,y+2)
考点: 坐标与图形变化-旋转;坐标与图形变化-平移.
专题: 几何变换.
分析: 先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(﹣x,y+2),即为P′点的坐标.
解答: 解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,
∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).
故选B.
点评: 本题考查了坐标与图形变化﹣旋转::30°,45°,60°,90°,180°.
4. (2014年湖北黄石) (2014•湖北黄石,第9题3分)正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是( )
第2题图
A.(2,0) B. (3,0) C. (2,﹣1) D. (2,1)
考点: 坐标与图形变化-旋转.
分析: 正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.
解答: 解:AC=2,
则正方形ABCD绕点A顺时针方向旋转180°后C
平面直角坐标系和点坐标 来自淘豆网m.daumloan.com转载请标明出处.