下载此文档

高中理科数学数列知识点和解题方法大全.doc


文档分类:中学教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍
一、高中数列知识点总结 2
1. 等差数列的定义与性质 2
2. 等比数列的定义与性质 3
二解题方法 4
1 求数列通项公式的常用方法 4
(1)求差(商)法 4
(2)叠乘法 4
(3)等差型递推公式 4
(4)等比型递推公式 5
(5)倒数法 5
2 求数列前n项和的常用方法 6
(1) 裂项法 6
(2)错位相减法 6
(3)倒序相加法 7
一、高中数列知识点总结
1. 等差数列的定义与性质
定义:(为常数),
等差中项:成等差数列
前项和
性质:是等差数列
(1)若,则
(2)数列仍为等差数列,仍为等差数列,公差为;
(3)若三个成等差数列,可设为
(4)若是等差数列,且前项和分别为,则
(5)为等差数列(为常数,是关于的常数项为0的二次函数)
的最值可求二次函数的最值;或者求出中的正、负分界项,
即:当,解不等式组可得达到最大值时的值.
当,由可得达到最小值时的值.
(6)项数为偶数的等差数列,有
,.
(7)项数为奇数的等差数列,有
,
,.
2. 等比数列的定义与性质
定义:(为常数,),.
等比中项:成等比数列,或.
前项和:(要注意!)
性质:是等比数列
(1)若,则
(2)仍为等比数列,公比为.
注意:由求时应注意什么?
时,;
时,.
二解题方法
1 求数列通项公式的常用方法
(1)求差(商)法
如:数列,,求
解时,,∴①
时, ②
①—②得:,∴,∴
[练习]数列满足,求
注意到,代入得;又,∴是等比数列,
时,
(2)叠乘法
如:数列中,,求
解,∴又,∴.
(3)等差型递推公式
由,求,用迭加法
时,两边相加得

[练习]数列中,,求()
(4)等比型递推公式
(为常数,)
可转化为等比数列,设
令,∴,∴是首项为为公比的等比数列
∴,∴
(5)倒数法
如:,求
由已知得:,∴
∴为等差数列,,公差为,∴,

(附:公式法、利用、累加法、、待定系数法、对数变换法、迭代法、数学归纳法、换元法)
2 求数列前n项和的常用方法
(1) 裂项法
把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.
如:是公差为的等差数列,求
解:由

[练习]求和:
(2)错位相减法
若为等差数列,为等比数列,求数列(差比数列)前项和,可由,求,其中为的公比.
如: ①

①—②
时,,时,
(3)倒序相加法
把数列的各项顺序倒写,再与原来顺序的数列相加.
相加
[练习]已知,则


∴原式
(附:
如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

对等差数列、等比数列,

高中理科数学数列知识点和解题方法大全 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人花开一叶
  • 文件大小195 KB
  • 时间2018-09-22
最近更新