下载此文档

八年级数学一次函数.ppt


文档分类:中学教育 | 页数:约27页 举报非法文档有奖
1/27
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/27 下载此文档
文档列表 文档介绍
第25章
一次函数
、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量;
返回引入
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1).用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四. 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
下面的2个图形中,哪个图象中y是关于x的函数.
图1
图2
1、列表(表中给出一些自变量的值及其对应的函数值。)
2、描点:(在直角坐标系中,以自变量的值为横坐
标,相应的函数值为纵坐标,描出表格中数值对应的
各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点
用平滑的曲线连接起来)。
五、用描点法画函数的图象的一般步骤:
注意:列表时自变量由小到大,相差一样,有时需对称。
完全免费,无需注册,天天更新!
(1)解析式法
(2)列表法
(3)图象法
正方形的面积S 与边长 x的函数关系为:
S=x2
(x>0)
六、函数有三种表示形式:
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)

当b =0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
一般地,形如y=kx+b(k,b为常数,且k≠0)
的函数叫做一次函数.
(1)图象:正比例函数y= kx (k 是常数,k≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
(2)性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
:
八、一次函数与正比例函数的图象与性质
一次函数y=kx+b(b≠0)
图象
k,b的符号
经过象限
增减性
正比例函数y=kx
x
y
o
b
x
y
o
b
x
y
o
b
x
y
o
b
y随x的增
大而增大
y随x的增
大而增大
y随x的增
大而减少
y随x的增
大而减少
一、二、三
一、三、四
一、二、四
二、三、四
1、图象是经过(0,0)与(1,k)的一条直线
2、当k>0时,图象过一、三象限;y随x的增大而增大。
当k<0时,图象过二、四象限;y随x的增大而减少。
k>0
b>0
k>0
b<0
k<0
b>0
k<0
b<0

八年级数学一次函数 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数27
  • 收藏数0 收藏
  • 顶次数0
  • 上传人文库旗舰店
  • 文件大小1.09 MB
  • 时间2018-09-30
最近更新