下载此文档

人教版高中数学必修一函数知识点(精简版).doc


文档分类:中学教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
函数常考知识点汇总

1、函数的概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→: y=f(x),x∈A.
【定义域补充】求函数的定义域时列不等式组的主要依据是
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必须大于零;
(4)指数、对数式的底数必须大于零且不等于1.
(5),它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不可以等于零
(7)实际问题中的函数的定义域还要保证实际问题有意义.
3、相同函数的判断方法
(1)定义域一致;(2)表达式相同(两点必须同时具备)
注意:两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

4、函数图象知识(Ⅰ)对称变换①将y= f(x)在x轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5
②y= f(x)和y= f(-x)的图象关于y轴对称。如
③y= f(x)和y= -f(x)的图象关于x轴对称。如
6、函数的解析式 A、如果已知函数解析式的构造时,可用待定系数法;
B、已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;
C、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)
(小)值
1、函数的单调性定义
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间;
【注意】(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
(2)必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (或f(x1)>f(x2))。
3、函数单调区间与单调性的判定方法
(A) 定义法①任取x1,x2∈D,且x1<x2;②作差f(x1)-f(x2);③变形(通常是因式分解和配方);
④定号(即判断差f(x1)-f(x2)的正负); ⑤下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降) (C)复合函数的单调性:复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:同增异减
4、判断函数的单调性常用的结论
⑤函数、都是增(减)函数,则仍是增(减)函数;
⑥若且与都是增(减)函数,则也是增(减)函数;
若且与都是增(减)函数,则也是减(增)函数;
5、函数的最大(小)值定义
(ⅰ)一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值.
6、利用函数单调性的判断函数的最大(小)值的方法利用二次函数的性质(配方法)求函数的最大(小

人教版高中数学必修一函数知识点(精简版) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zxwziyou9
  • 文件大小675 KB
  • 时间2018-10-08
最近更新