下载此文档

分式方程的概念及解法.doc


文档分类:高等教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
分式方程的概念,解法
知识要点梳理
要点一:分式方程的定义
分母里含有未知数的方程叫分式方程。
要点诠释:
:①是方程;②含有分母;③分母里含有未知量。
(不是一般的字母系数),分母中含有未知
数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和
都是分式方程,而关于的方程和都是整式方程。
要点二:分式方程的解法
1. 解分式方程的其本思想
把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化
为整式方程,然后利用整式方程的解法求解。

(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公
分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:
对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
规律方法指导
,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.
经典例题透析:
类型一:分式方程的定义
1、下列各式中,是分式方程的是( )
A. B. C. D.
举一反三:
【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是( )

类型二:分式方程解的概念
2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________.

举一反三:
【变式】在中,哪个是分式方程的解,为什么?

类型三:分式方程的解法
3、解方程

举一反三:
【变式】解方程:(1)=; (2)+=2.

类型四:增根的应用
4、当m为何值时,方程会产生增根( )
A. 2 B. -1 C. 3 D.-3
举一反三:
【变式】.若方程=无解,则m= 。
学习成果测评
基础达标
选择题(请将唯一正确答案的代号填入题后的括号内)
,方程两边需要同时乘以( ).
-4 (x-2) (x-2)
( ).
B.-1 C.±1
(x-2),约去分母得( ).
-(1-x)=1 +(1-x)=1
-(1-x)=x-2 +(1-x)=x-2

分式方程的概念及解法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人在水一方
  • 文件大小135 KB
  • 时间2018-10-14