下载此文档

2.61双曲线的性质.doc


文档分类:中学教育 | 页数:约8页 举报非法文档有奖
1/8
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/8 下载此文档
文档列表 文档介绍

【学习目标】
、范围、定点、离心率、渐近线等简单性质.
.
.
【要点梳理】
要点一、双曲线的简单几何性质
双曲线(a>0,b>0)的简单几何性质
范围
双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a.
对称性
对于双曲线标准方程(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。
顶点
①双曲线与它的对称轴的交点称为双曲线的顶点。
②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为
A1(-a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。
③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,-b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。
①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。
②双曲线的焦点总在实轴上。
③实轴和虚轴等长的双曲线称为等轴双曲线。
离心率
①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。
②因为c>a>0,所以双曲线的离心率。
由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。
③等轴双曲线,所以离心率。
渐近线
经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是。
我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。
要点二、双曲线两个标准方程几何性质的比较
标准方程
图形
性质
焦点
,
,
焦距
范围
,
,
对称性
关于x轴、y轴和原点对称
顶点


实轴长=,虚轴长=
离心率
渐近线方程
要点诠释:双曲线的焦点总在实轴上,因此已知标准方程,判断焦点位置的方法是:看x2、y2的系数,如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上。
对于双曲线,a不一定大于b,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条坐标轴上。
要点三、双曲线的渐近线
(1)已知双曲线方程求渐近线方程:
若双曲线方程为,则其渐近线方程为
已知双曲线方程,将双曲线方程中的“常数”换成“0”,然后因式分解即得渐近线方程。
(2)已知渐近线方程求双曲线方程:
若双曲线渐近线方程为,则可设双曲线方程为,根据已知条件,求出即可。
(3)与双曲线有公共渐近线的双曲线
与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y轴上)
(4)等轴双曲线的渐近线
等轴双曲线的两条渐近线互相垂直,为,因此等轴双曲线可设为.
要点

2.61双曲线的性质 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数8
  • 收藏数0 收藏
  • 顶次数0
  • 上传人pk5235
  • 文件大小881 KB
  • 时间2018-10-23
最近更新