下载此文档

空间几何体的内切球及外接球问题.doc


文档分类:通信/电子 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
空间几何体的内切球与外接球问题
1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )

[解析]A 因为正方体的体积为8,所以正方体的体对角线长为2,所以正方体的外接球的半径为,所以球的表面积为4π·()2=12π.
2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC ­ ⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
B. D.
[解析]B 当球与三侧面相切时,设球的半径为r1,∵AB⊥BC,AB=6,BC=8,∴8-r1+6-r1=10,解得r1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r2,则2r2=3,即r2=.∴球的最大半径为,故V的最大值为π×=π.
3.[2016·郑州模拟] 在平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2,将其沿对角线BD折起,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一球面上,则该球的体积为________.
答案:π;解析:因为∠CBA=120°,所以∠DAB=60°,在三角形ABD中,由余弦定理得(2)2=42+AB2-2×4·AB·cos 60°,解得AB=2,所以AB⊥⊥平面BCD,即有AB⊥平面BCD,如图所示,可知A,B,C,D可看作一个长方体中的四个顶点,长方体的体对角线AC就是四面体ABCD外接球的直径,易知AC==2,
所以球的体积为π.
4.[2016·山西右玉一中模拟] 球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S­ABC的体积的最大值为( )
A. B.
选A;[解析] (1)由于平面SAB⊥平面ABC,所以点S在平面ABC上的射影H落在AB上,根据球的对称性可知,当S在“最高点”,即H为AB的中点时,SH最大,此时棱锥S­ABC的体积最大.
因为△ABC是边长为2的正三角形,所以球的半径r=OC=CH=××2=.
在Rt△SHO中,OH=OC=,
所以SH==1,
故所求体积的最大值为××22×1=.
5.[2016·赣州模拟] 如图7­38­19所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=,若AD=R(R为球O的半径),则球O的表面积为( )
图7­38­19

选D;解析:因为AB,AC,AD两两垂直,所以以AB,AC,AD为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB=AC=,所以AE=,AD=R,DE=2R,则有R2+6=(2R)2,解得R=,所以球的表面积S=4πR2=8π.
6.[2016·安徽皖南八校三联] 如图所示,已知三棱锥A­BCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=,BC=2,CD=,则球O的表面积为( )

[解析]A 由AC⊥平面BCD,BC⊥CD知三棱锥A­BCD可以补成以AC,BC,CD为三条棱的长方体,设球O的半径为R,则有(2R)2=A

空间几何体的内切球及外接球问题 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人w3332654
  • 文件大小501 KB
  • 时间2018-10-24
最近更新