空间几何体的内切球与外接球问题
1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )
[解析]A 因为正方体的体积为8,所以正方体的体对角线长为2,所以正方体的外接球的半径为,所以球的表面积为4π·()2=12π.
2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC ⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
B. D.
[解析]B 当球与三侧面相切时,设球的半径为r1,∵AB⊥BC,AB=6,BC=8,∴8-r1+6-r1=10,解得r1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r2,则2r2=3,即r2=.∴球的最大半径为,故V的最大值为π×=π.
3.[2016·郑州模拟] 在平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2,将其沿对角线BD折起,使平面ABD⊥平面BCD,若四面体ABCD的顶点在同一球面上,则该球的体积为________.
答案:π;解析:因为∠CBA=120°,所以∠DAB=60°,在三角形ABD中,由余弦定理得(2)2=42+AB2-2×4·AB·cos 60°,解得AB=2,所以AB⊥⊥平面BCD,即有AB⊥平面BCD,如图所示,可知A,B,C,D可看作一个长方体中的四个顶点,长方体的体对角线AC就是四面体ABCD外接球的直径,易知AC==2,
所以球的体积为π.
4.[2016·山西右玉一中模拟] 球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥SABC的体积的最大值为( )
A. B.
选A;[解析] (1)由于平面SAB⊥平面ABC,所以点S在平面ABC上的射影H落在AB上,根据球的对称性可知,当S在“最高点”,即H为AB的中点时,SH最大,此时棱锥SABC的体积最大.
因为△ABC是边长为2的正三角形,所以球的半径r=OC=CH=××2=.
在Rt△SHO中,OH=OC=,
所以SH==1,
故所求体积的最大值为××22×1=.
5.[2016·赣州模拟] 如图73819所示,设A,B,C,D为球O上四点,AB,AC,AD两两垂直,且AB=AC=,若AD=R(R为球O的半径),则球O的表面积为( )
图73819
选D;解析:因为AB,AC,AD两两垂直,所以以AB,AC,AD为棱构建一个长方体,如图所示,则长方体的各顶点均在球面上,AB=AC=,所以AE=,AD=R,DE=2R,则有R2+6=(2R)2,解得R=,所以球的表面积S=4πR2=8π.
6.[2016·安徽皖南八校三联] 如图所示,已知三棱锥ABCD的四个顶点A,B,C,D都在球O的表面上,AC⊥平面BCD,BC⊥CD,且AC=,BC=2,CD=,则球O的表面积为( )
[解析]A 由AC⊥平面BCD,BC⊥CD知三棱锥ABCD可以补成以AC,BC,CD为三条棱的长方体,设球O的半径为R,则有(2R)2=A
空间几何体的内切球及外接球问题 来自淘豆网m.daumloan.com转载请标明出处.