图形的相似.DOC图形的相似
(2013,永州)如图,已知ABBD,CDBD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=,CD=,BD=,请问满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?
(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 .
考点:
分析:
根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.
解答:
解:∵DE∥BC,
∴△ADE∽△ACB,即=,
则=,
∴h=.
故答案为:.
点评:
本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
(2013,成都)如图,点在线段上,点,在同侧,,,.
(1)求证:;
(2)若,,点为线段上的动点,连接,作,交直线与点;
i)当点与,两点不重合时,求的值;
ii)当点从点运动到的中点时,求线段的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
(1)证△ABD≌△CEB→AB=CE;
(2)如图,过Q作QH⊥BC于点H,则△ADP∽△HPQ,△BHQ∽△BCE,
∴,;
设AP= ,QH=,则有
∴BH=,PH=+5
∴,即
又∵P不与A、B重合,∴即,
∴即
∴
(3)
(2013•广安),某校师生准备了一些等腰直角三角形纸片,从每张纸片中剪出一个半圆制作玩具,,是腰长为4的等腰直角三角形ABC,要求剪出的半圆的直径在△ABC的边上,且半圆的弧与△ABC的其他两边相切,请作出所有不同方案的示意图,并求出相应半圆的半径(结果保留根号).
考点:
作图—应用与设计作图.
专题:
作图题.
分析:
分直径在直角边AC、BC上和在斜边AB上三种情况分别求出半圆的半径,然后作出图形即可.
解答:
解:根据勾股定理,斜边AB==4,
①如图1、图2,直径在直角边BC或AC上时,
∵半圆的弧与△ABC的其它两边相切,
∴=,
解得r=4﹣4,
②如图3,直径在斜边AB上时,∵半圆的弧与△ABC的其它两边相切,
∴=,
解得r=2,
作出图形如图所示:
点评:
本题考查了应用与设计作图,主要利用了直线与圆相切,相似三角形对应边成比例的性质,分别求出半圆的半径是解题的关键.
(2013•眉山)如图,△ABC中,E、F分别是AB、AC上的两点,且,若△AEF的面积为2,则四边形EBCF的面积为_________
(2013•眉山)在矩形ABCD中,DC=,CF⊥BD分别交BD、AD于点E、F,连接BF。
⑴求证:△DEC∽△FDC;
⑵当F为AD的中点时,求sin∠FBD的值及BC的长度。
C
B
A
D
F
E
(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心。重心有很多美妙的性质,“漂亮”结论,利用这些性质可以解决三角形中的若干问题。请你利用重心的概念完成如下问题:
(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值。
2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )
A.
2:5
B.
2:3
C.
3:5
D.
3:2
考点:
相似三角形的判定与性质;平行四边形的性质.
分析:
先根据平行四边形的性质及相似三
图形的相似 来自淘豆网m.daumloan.com转载请标明出处.