二次函数知识点归纳及提高训练
:一般地,如果是常数,,那么叫做的二次函数.
(1)抛物线的顶点是坐标原点,对称轴是轴.(2)函数的图像与的符号关系.
①当时抛物线开口向上顶点为其最低点;②当时抛物线开口向下顶点为其最高点
(包括重合)轴的抛物线.
:的形式,其中.
,可分为以下几种形式:
①;②;③;④;⑤.
:开口方向、对称轴、顶点.
①决定抛物线的开口方向:
当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.
②平行于轴(或重合),轴记作直线.
,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
、对称轴的方法
(1)公式法:,∴顶点是,对称轴是直线.
(2)配方法:运用配方法将抛物线的解析式化为的形式,得到顶点为(,),对称轴是.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★
,的作用
(1)决定开口方向及开口大小,这与中的完全一样.
(2),故:
①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;
③(即、异号)时,对称轴在轴右侧.
(3)的大小决定抛物线与轴交点的位置.
当时,,∴抛物线与轴有且只有一个交点(0,):
①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.
以上三点中,当结论和条件互换时,,则.
:
函数解析式
开口方向
对称轴
顶点坐标
当时
开口向上
当时
开口向下
(轴)
(0,0)
(轴)
(0, )
(,0)
(,)
()
(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.
(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.
(1)轴与抛物线得交点为()
(2)与轴平行的直线与抛物线有且只有一个交点(,).
(3)抛物线与轴的交点
二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程
:
①有两个交点抛物线与轴相交;
②有一个交点(顶点在轴上)抛物线与轴相切;
③没有交点抛物线与轴相离.
(4)平行于轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根.
(5)一次函数的图像与二次函数的图像的交点,由方程组
的解的数目来确定:
①方程组有两组不同的解时与有两个交点;
②方程组只有一组解时与只有一个交点;③方程组无解时与没
二次函数知识点(大全) 来自淘豆网m.daumloan.com转载请标明出处.