下载此文档

二次函数知识点总结.doc


文档分类:中学教育 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
二次函数知识点总结及相关典型题目
第一部分二次函数基础知识
相关概念及定义
二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,.
二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵是常数,是二次项系数,是一次项系数,是常数项.
二次函数各种形式之间的变换
二次函数用配方法可化成:的形式,其中.
二次函数由特殊到一般,可分为以下几种形式:①;②;③;④;⑤.
二次函数解析式的表示方法
一般式:(,,为常数,);
顶点式:(,,为常数,);
两根式:(,,是抛物线与轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,.
二次函数的性质
的符号
开口方向
顶点坐标
对称轴
性质
向上

时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下

时,随的增大增大而减小;时,随的增大而增大;时,有最大值.








二次函数的性质
的符号
开口方向
顶点坐标
对称轴
性质性质
向上

时,随的增大而增大;时,
随的增大而减小;时,有最小值.
向下

时,随的增大而减小;时,随的增大而增大;时,有最大值.
二次函数的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
二次函数的性质
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
抛物线的三要素:开口方向、对称轴、顶点.
的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;
相等,抛物线的开口大小、形状相同.
对称轴:平行于轴(或重合),轴记作直线.
顶点坐标坐标:
,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
抛物线中,与函数图像的关系
二次项系数
二次函数中,作为二次项系数,显然.
⑴当时,抛物线开口向上,越大,开口越小,反之的值越小,开口越大;
⑵当时,抛物线开口向下,越小,开口越小,反之的值越大,开口越大.
总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大
小.
一次项系数
在二次项系数确定的前提下,决定了抛物线的对称轴.
⑴在的前提下,
当时,,即抛物线的对称轴在轴左侧;
当时,,即抛物线的对称轴就是轴;
当时,,即抛物线对称轴在轴的右侧.
⑵在的前提下,结论刚好与上述相反,即
当时,,即抛物线的对称轴在轴右侧;
当时,,即抛物线的对称轴就是轴;
当时,,即抛物线对称轴在轴的左侧.
总结起来,在确定的前提下,决定了抛物线对称轴的位置.
总结:
常数项
⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;
⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;
⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.
总结起来,决定了抛物线与轴交点的位置.
总之,只要都确定,那么这条抛物线就是唯一确定的.
求抛物线的顶点、对称轴的方法
公式法:,∴顶点是,对称轴是直线
.
配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.
运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
用待定系数法求二次函数的解析式
一般式:.已知图像上三点或三对、的值,通常选择一般式.
顶点式:.已知图像的顶点或对称轴,通常选择顶点式.
交点式:已知图像与轴的交点坐标、,通常选用交点式:.
直线与抛物线的交点
轴与抛物线得交点为(0, ).
与轴平行的直线与抛物线有且只有一个交点(,).
抛物线与轴的交点:二次函数的图像与轴的两个交点的横坐标、,

二次函数知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人镜花水月
  • 文件大小1021 KB
  • 时间2018-11-05