下载此文档

二次函数知识点总结和题型总结.docx


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
二次函数知识点总结和题型总结
一、二次函数概念:
:一般地,形如(是常数,)的函
数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2. 二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵是常数,是二次项系数,是一次项系数,是常数项.
例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围
为。
二、二次函数的基本形式
1. 二次函数基本形式:的性质:
a 的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上

时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下

时,随的增大而减小;时,随的增大而增大;时,有最大值.
的性质:
上加下减。
的符号
开口方向
顶点坐标
对称轴
性质
向上

时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下

时,随的增大而减小;时,随的增大而增大;时,有最大值.
3. 的性质:
左加右减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,
随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
4. 的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
二次函数的对称轴、顶点、最值
(技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k;如果解析式为一般式y=ax2+bx+c则最值为)
=2x2+4x+m2-m经过坐标原点,则m的值为。
=x2+bx+c线的顶点坐标为(1,3),则b= ,c= .
=x2+3x的顶点在( )

=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )
A. B. C. D.
=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )
,对称轴是y轴 ,对称轴是y轴
,对称轴平行于y轴 ,对称轴平行于y轴
已知二次函数y=mx2+(m-1)x+m-1有最小值为0,则m= 。
三、二次函数图象的平移
1. 平移步骤:
方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;
⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

2. 平移规律
在原有函数的基础上“值正右移,负左移;值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
方法二:
⑴沿轴平移:向上(下)平移个单位,变成
(或)
⑵沿轴平移:向左(右)平移个单位,变成(或)
函数y=ax2+bx+c的图象和性质例题:
=x2+4x+9的对称轴是。
=2x2-12x+25的开口方向是,顶点坐标是。
,写出下列函数的开口方向、对称轴和顶点坐标:
(1)y=x2-2x+1 ; (2)y=-3x2+8x-2; (3)y=-x2+x-4
4、把抛物线y=x2+bx+c的图象向右平移3个单位,在向下平移2个单位,所得
图象的解析式是y=x2-3x+5,试求b、c的值。
5、把抛物线y=-2x2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,
问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。
四、二次函数与的比较
从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
五、二次函数图象的画法
五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
六、二次函数的性质
1. 当时,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
2. 当时,抛物线开口向下,对称轴为,,随的增大而增大;当时,随的增大而减小;当时,有最大值

二次函数知识点总结和题型总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cjl201702
  • 文件大小513 KB
  • 时间2018-11-09
最近更新