重难点归纳
1 数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性
2 数列{an}前n 项和Sn与通项an的关系式 an=
3 求通项常用方法
①作新数列法作等差数列与等比数列
②累差叠加法最基本形式是
an=(an-an-1+(an-1+an-2)+…+(a2-a1)+a1
③归纳、猜想法
4 数列前n项和常用求法
①重要公式
1+2+…+n=n(n+1)
12+22+…+n2=n(n+1)(2n+1)
13+23+…+n3=(1+2+…+n)2=n2(n+1)2
②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn
③裂项求和将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项应掌握以下常见的裂项
④错位相减法
⑤分组求和法
例1:已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求数列{an}和{bn}的通项公式;
(2)}的前n项和为Sn,对一切n∈N*,都有=an+1成立,求
知识依托本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,是该条件转化的突破口
技巧与方法本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn}运用和与通项的关系求出dn,丝丝入扣
解(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,
∴a3-a1=d2-(d-2)2=2d,
∵d=2,∴an=a1+(n-1)d=2(n-1);
又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,
∴=q2,由q∈R,且q≠1,得q=-2,
∴bn=b·qn-1=4·(-2)n-1
(2)令=dn,则d1+d2+…+dn=an+1,(n∈N*),
∴dn=an+1-an=2,
∴=2,即cn=2·bn=8·(-2)n-1;∴Sn=[1-(-2)n]
∴
例2设An为数列{an}的前n项和,An= (an-1),数列{bn}的通项公式为bn=4n+3;
(1)求数列{an}的通项公式;
(2)把数列{an}与{bn}的公共项按从小到大的顺序排成一个新的数列,证明数列{dn}的通项公式为dn=32n+1;
(3)设数列{dn}的第n项是数列{bn}中的第r项,Br为数列{bn}的前r项的和;Dn为数列{dn}的前n项和,Tn=Br-Dn,求
知识依托利用项与和的关系求an是本题的先决;(2)问中探寻{an}与{bn}的相通之处,须借助于二项式定理;而(3)问中利用求和公式求和则是最基本的知识点
技巧与方法(1)问中项与和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n与r的关系,正确表示Br,问题便可迎刃而解
解(1)由An=(an-1),可知An+1=
数列的通项公式与求和的常用方法 来自淘豆网m.daumloan.com转载请标明出处.