下载此文档

多元线性回归计算方法.doc


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
多元线性回归的计算方法
摘要
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:
Zy=β1Zx1+β2Zx2+…+βkZxk
注意,由于都化成了标准分,所以就不再有常数项a了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立
多元线性回归模型的一般形式为
Yi=β0+β1X1i+β2X2i+…+ =1,2,…,n
其中 k为解释变量的数目,=(j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为
E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki
βj也被称为偏回归系数(partial regression coefficient)
多元线性回归的计算模型
一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:
Y=b0+b1x1+…+bkxk+e
其中,b0为常数项X1,X2…Xk为回归系数,b1为X1,X2…Xk固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为X1,X2…Xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:
Y=b0+b1x1+…+bkxk+e
其中,b0为常数项,X1,X2…Xk为回归系数,b1为X1,X2…Xk固定时,x2每增加一个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:

多元线性回归计算方法 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cxmckate6
  • 文件大小0 KB
  • 时间2015-09-20
最近更新