初中数学锐角三角函数公开课教学设计
目标:
1、理解锐角三角函数的定义,掌握锐角三角函数的表示法;
2、能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;
3、掌握 Rt △中的锐角三角函数的表示:
sinA= , cosA= , tanA=
4 、掌握锐角三角函数的取值范围;
5 、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
教学重点:
锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
教学难点:
锐角三角函数概念的形成。
教学过程:
一、创设情境:
鞋跟多高合适?
美国人体工程学研究人员卡特·克雷加文调查发现, 70 %以上的女性喜欢穿鞋跟高度为 6 至 7 厘米左右的高跟鞋。但专家认为穿 6 厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为 11 度左右时,人脚的感觉最舒适。假设某成年人脚前掌到脚后跟长为 15 厘米,不难算出鞋跟在 3 厘米左右高度为最佳。
问:你知道专家是怎样计算的吗?
显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。
二、探索新知:
1 、下面我们一起来探索一下。
实践一:作一个 30 °的∠ A ,在角的边上任意取一点 B ,作 BC ⊥ AC 于点 C 。
⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠ A=30 °时学生 1 结果学生 2 结果学生 3 结果学生 4 结果⑵将你所取的 AB 的值和你的同伴比较。
实践二:作一个 50 °的∠ A ,在角的边上任意取一点 B ,作 BC ⊥ AC 于点 C 。
( 1 )量出 AB , AC , BC 的长度(精确到 1mm )。
( 2 )计算BC / AB ,AC / AB,的值(结果保留 2 个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠ A=50 °时 AB AC BC 学生 1 结果学生 2 结果学生 3 结果学生 4 结果( 3 )将你所取的 AB 的值和你的同伴比较。
2 、经过实践一和二进行猜测
猜测一:当∠ A 不变时,三个比值与 B 在 AM 边上的位置有无关系?
猜测二:当∠ A 的大小改变时,相应的三个比值会改变吗?
3、理论推理
如图, B 、 B 1 是一边上任意两点,作 BC ⊥ AC 于点 C , B 1 C 1 ⊥ AC 1 于点 C 1 ,
判断比值与,与,与是否相等,并说明理由。
4 、归纳总结得到新知:
⑴三个比值与 B 点在的边 AM 上的位置无关;
⑵三个比值随的变化而变化,但(0 °﹤∠α﹤90 ° )确定时,三个比值随之确定;
比值,,都是锐角的函数
比值叫做的正弦, sinα=
比值叫做的余弦, cos α=
比值叫做的正切, tanα=
( 3 )注意点: sin α, cos α, tan α都是一个完整的符号,单独的“ sin ”没有意义,其中前面的“∠”一般省略不写。
强化读法,写法;分清各三角函数的自变量和应变量。
三、深化新知
1 、三角函数的定义
在 Rt △ ABC 中,如果锐角 A
初中数学锐角三角函数公开课教学设计 来自淘豆网m.daumloan.com转载请标明出处.