下载此文档

人教版高中数学选修部分知识点总结理科.doc


文档分类:中学教育 | 页数:约26页 举报非法文档有奖
1/26
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/26 下载此文档
文档列表 文档介绍
高二数学选修2-1知识点
第一章常用逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.
假命题:判断为假的语句.
2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.
3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,,另一个称为原命题的逆命题.
若原命题为“若,则”,它的逆命题为“若,则”.
4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,,另一个称为原命题的否命题.
若原命题为“若,则”,则它的否命题为“若,则”.
5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,,另一个称为原命题的逆否命题.
若原命题为“若,则”,则它的否命题为“若,则”.
6、四种命题的真假性:
原命题
逆命题
否命题
逆否命题
















四种命题的真假性之间的关系:
两个命题互为逆否命题,它们有相同的真假性;
两个命题为互逆命题或互否命题,它们的真假性没有关系.
7、若,则是的充分条件,是的必要条件.
若,则是的充要条件(充分必要条件).
8、用联结词“且”把命题和命题联结起来,得到一个新命题,记作.
当、都是真命题时,是真命题;当、两个命题中有一个命题是假命题时,是假命题.
用联结词“或”把命题和命题联结起来,得到一个新命题,记作.
当、两个命题中有一个命题是真命题时,是真命题;当、两个命题都是假命题时,是假命题.
对一个命题全盘否定,得到一个新命题,记作.
若是真命题,则必是假命题;若是假命题,则必是真命题.
9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“”表示.
含有全称量词的命题称为全称命题.
全称命题“对中任意一个,有成立”,记作“,”.
短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“”表示.
含有存在量词的命题称为特称命题.
特称命题“存在中的一个,使成立”,记作“,”.
10、全称命题:,,它的否定:,.全称命题的否定是特称命题.
第二章圆锥曲线与方程
11、平面内与两个定点,的距离之和等于常数(大于),两焦点的距离称为椭圆的焦距.
12、椭圆的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围


顶点




轴长
短轴的长长轴的长
焦点


焦距
对称性
关于轴、轴、原点对称
离心率
准线方程
13、设是椭圆上任一点,点到对应准线的距离为,点到对应准线的距离为,则.
14、平面内与两个定点,的距离之差的绝对值等于常数(小于),两焦点的距离称为双曲线的焦距.
15、双曲线的几何性质:
焦点的位置
焦点在轴上
焦点在轴上
图形
标准方程
范围
或,
或,
顶点


轴长
虚轴的长实轴的长
焦点


焦距
对称性
关于轴、轴对称,关于原点中心对称
离心率
准线方程
渐近线方程
16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设是双曲线上任一点,点到对应准线的距离为,点到对应准线的距离为,则.
18、,定直线称为抛物线的准线.
19、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.
20、焦半径公式:
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则;
若点在抛物线上,焦点为,则.
21、抛物线的几何性质:
标准方程
图形
顶点
对称轴


焦点
准线方程
离心率
范围
第三章空间向量与立体几何
22、空间向量的概念:
在空间,具有大小和方向的量称为空间向量.
,箭头所指的方向表示向量的方向.
向量的大小称为向量的模(或长度),记作.
模(或长度)为的向量称为零向量;模为的向量称为单位向量.
与向量长度相等且方向相反的向量称为的相反向量,记作.
方向相同且模相等的向量称为相等向量.
23、空间向量的加法和减法:
求两个向量和的运算称为向量的加法,它遵循平行四边形法则

人教版高中数学选修部分知识点总结理科 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数26
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wz_198613
  • 文件大小2.39 MB
  • 时间2018-12-05
最近更新