下载此文档

均值不等式公式总结和应用.doc


文档分类:中学教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
均值不等式应用
1.(1)若,则 (2)若,则(当且仅当时取“=”)
2.(1)若,则 (2)若,则 (当且仅当时取“=”)
(3)若,则(当且仅当时取“=”)
,则(当且仅当时取“=”)
若,则(当且仅当时取“=”)
若,则(当且仅当时取“=”)
,则(当且仅当时取“=”)
若,则(当且仅当时取“=”)
,则(当且仅当时取“=”)
(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用
应用一:求最值
例1:求下列函数的值域
(1)y=3x2+(2)y=x+
解:(1)y=3x2+≥2=∴值域为[,+∞)
(2)当x>0时,y=x+≥2=2;
当x<0时,y=x+=-(-x-)≤-2=-2
∴值域为(-∞,-2]∪[2,+∞)
解题技巧
技巧一:凑项
例已知,求函数的最大值。
解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,
,
当且仅当,即时,上式等号成立,故当时,。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数
,求的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。
当,即x=2时取等号当x=2时,的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
变式:设,求函数的最大值。
解:∵


当且仅当即时等号成立。
技巧三:分离

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
当,即时,(当且仅当x=1时取“=”号)。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当,即t=时,(当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。
例:求函数的值域。
解:令,则
因,但解得不在区间,故等号不成立,考虑单调性。
因为在区间单调递增,所以在其子区间为单调递增函数,故。
所以,所求函数的值域为。
,并求取得最小值时,x的值.
(1)
(2)
(3)
,求函数的最大值.;
3.,求函数的最大值.
条件求最值
,则的最小值是.
分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值,
解:都是正数,≥
当时等号成立,由及得
即当时,的最小值是6.
变式:若,,y的值
技巧六:整体代换
多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知,且,

均值不等式公式总结和应用 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wh7422
  • 文件大小509 KB
  • 时间2019-01-06