下载此文档

第十一章《三角形》导学案人教版.doc


文档分类:建筑/环境 | 页数:约25页 举报非法文档有奖
1/25
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/25 下载此文档
文档列表 文档介绍
第21课时:
【学习目标】,能用符号语言表示三角形,并把三角形分类.
.
,并能用于解决有关的问题
【学习重点】知道三角形三边不等关系.
【学习难点】判断三条线段能否构成一个三角形的方法.
【学习过程】
一、学前准备
回忆你所学过或知道的三角形的有关知识。并写出来。
二、探索思考
知识点一:三角形概念及分类
1、学生自学课本63-64页探究之前内容,并完成下列问题:
(1)三角形概念:由不在同一直线上的三条线段___________________所组成的图形叫做三角形。
如图,线段____、______、______是三角形的边;点A、B、C是三角形的______; _____、______、_______是相邻两边组成的角,叫做三角形的内角,简称三角形的角。图中三角形记作__________。
(2)三角形按角分类可分为_____________、______________、_________________。
(3)三角形按边分类可分为_____________
三角形_____________
D
E
F
A
B
C
———————_____________
(4)如图1,等腰三角形ABC中,AB=AC,腰是__________,
底是_________,顶角指_______,底角指_____________.
等边三角形DEF是特殊的_______三角形,DE=____=_____.
练习一: 图1
1、?

图2
2、图3中有几个三角形?用符号表示这些三角形.
教师备课札记
知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形
1、探究:请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:
AB+BC_____AC AB+ AC _____ BC AC +BC _____ AB
从中你可以得出结论:__________________________________________。
练习二:
1、下列长度的三条线段能否组成三角形?为什么?
(1)3,4,8; (2)5,6,11; (3)5,6,10
2、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_______个。
(3)如果三角形的两边长分别是3和5,那么第三边长可能是( )
A、1 B、9 C、3 D、10
3、阅读课本64页例题,仿照例题解法完成下面这个问题:
一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。
4、如图4,图中所有三角形的个数为,在△ABE中,AE所对的角是,∠ABC所对的边是,AD在△ADE中,是的对边,在△ADC中,是的对边;
三、当堂反馈
1、下列长度的三条线段中,能组成三角形的是( )
3cm,5cm ,8cm B、8cm,8cm,18cm
C、,, D、3cm,40cm,8cm
2、.如果线段a,b,c能组成三角形,那么,它们的长度比可能是( )
A、1∶2∶4 B、1∶3∶4 C、3∶4∶7 D、2∶3∶4
3、如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为( )
A、5 B、6 C、7 D、8
4、一个等腰三角形的两边长分别是2和5,则它的周长是( )
A、7 B、9 C、12 D、9或12
5、若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为___________.
4、(选做)若△ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是___________.
5、(选做)已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。
四、课堂小结:本节课你学到了那些知识?
五、课后反思
第22课时:,中线,角平分线导学案班级姓名
【学习目标】,利用其解决相关问题;
,利用其解决相关问题;
,利用其解决相关问题;
【学分线,并会画出图形
【学分线.
【学习过程】
一、学前准备
1、三角形按边分可分为什么?按角分可分为什么?
2、下列长度的三个线段能否组成三角形?
(1)

第十一章《三角形》导学案人教版 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数25
  • 收藏数0 收藏
  • 顶次数0
  • 上传人799474576
  • 文件大小0 KB
  • 时间2013-09-10