下载此文档

数与式、方程、不等式.doc


文档分类:高等教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
数与式实数与代数式1、数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,∙∙∙叫无理数;有理数和无理数统称实数。实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。2、.(1)互为倒数的积为1;(2)互为相反数的和为0,商为-1;(3)绝对值是距离,非负数。3、相反数:、b互为相反数,则a+b=0,(a、b≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离去绝对值法则:正数的绝对值是它本身;零的绝对值是零;负数的绝对值是它的相反数数轴:①定义(三要素:原点、正方向,单位长度);②点与实数的一一对应关系。(2)性质:若干个非负数的和为0,则每个非负数均为0。5、近似数和有效数字:测量的结果都是近似的;利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。6、科学记数法;一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a﹤10,n是正整数,这种记数方法叫做科学记数法。7、整指数幂的运算:(a≠0)负整指数幂的性质:零整指数幂的性质:(a≠0)正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数8、实数的开方运算:9、实数的混合运算顺序10、无理数的错误认识:(1)···(41无限循环);(2)带根号的数是无理数如;(3)两个无理数的和、差、积、商也还是无理数,如都是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯一位置,如,我们可以用几何作图的方法在数轴上把它找出来,、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代入2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,:(2):括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”.(3)合并同类项:同类项的系数相加,、乘法公式(1).平方差公式:(2).完全平方公式:5、因式分解(1).多项式的因式分解,.(2).分解因式的常用方法有::整式A除以整式B,可以表示成的形式,如果除式B中含有字母,:(1)若B≠0,则有意义;(2)若B=0,则无意义;(3)若A=0

数与式、方程、不等式 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人花开花落
  • 文件大小72 KB
  • 时间2019-02-03
最近更新