下载此文档

经典例题透析.doc


文档分类:中学教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,.求::由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,【变式1】如图,已知:,,:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。举一反三【变式】一辆装满货物的卡车,,,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?.(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,,:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,,沿着圆柱的侧面爬行到点C,:利用勾股定理作长为的线段5、作长为、、的线段。思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。作法:如图所示举一反三【变式】在数轴上表示的点。7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△:本题是利用勾股定理的的逆定理,只要证明:a2+b2=c2即可【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。请问FE与DE是否垂直?请说明。经典例题精析类型一:勾股定理及其逆定理

经典例题透析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人zbfc1172
  • 文件大小159 KB
  • 时间2019-02-21
最近更新