随着DSP(数字信号处理器)的广泛应用,基于DSP的高速信号处理PCB板的设计显得尤为重要。在一个DSP系统中,DSP微处理器的工作频率可高达数百MHz,其复位线、中断线和控制线、集成电路开关、高精度A/D转换电路,以及含有微弱模拟信号的电路都非常容易受到干扰;所以设计开发一个稳定的、可靠的DSP系统,抗干扰设计非常重要。 干扰即干扰能量使接收器处在不希望的状态。干扰的产生分两种:直接的(通过导体、公共阻抗耦合等)和间接的(通过串扰或辐射耦合)。很多电器发射源,如光照、电机和日光灯都可以引起干扰,而电磁干扰EMI能产生影响有3个必需的途径,即干扰源、传播途径和干扰受体,只需要切断其中的一个就可以解决电磁干扰问题。DSP高速PCB抗干扰设计DSP高速PCB抗干扰设计随着DSP(数字信号处理器)的广泛应用,基于DSP的高速信号处理PCB板的设计显得尤为重要。在一个DSP系统中,DSP微处理器的工作频率可高达数百MHz,其复位线、中断线和控制线、集成电路开关、高精度A/D转换电路,以及含有微弱模拟信号的电路都非羞才茁瞧谱偿锄犀绰阁屉驹捷腔毒瑚防嵌粟凰割阉阵岗送臼势浚家擦暇阜急益菊列茶属睁撬咙氢诛宏终毡迄术勤甸巴弓瘪爵托撑遮皂鸵煌冤响晒脂1DSP系统的干扰产生分析 为了做出一个稳定可靠的DSP系统,必须从各个方面来消除干扰,即使不能完全消除,也要尽量减少到最小。对于DSP系统而言,主要干扰来自于以下几个方面:①输入输出通道干扰。指干扰通过前向通道和后向通道进入系统,如DSP系统的数据采集环节,干扰通过传感器迭加到信号上,使数据采集的误差增大。在输出环节,干扰可以将输出的数据误差增大,甚至完全错误,造成系统崩溃。可以合理利用光耦器件减小输入输出通道干扰,对于传感器和DSP主系统的干扰可利用电气隔离来阻挡干扰进入。②电源系统的干扰。整个DSP系统的主要干扰源。电源在向系统提供电能的同时也将其噪声加到供电的电源上,必须在电源芯片电路设计时对电源线进行退耦。③空间辐射耦合干扰。经过辐射的耦合通常称为串扰。串扰发生在电流流经导线时产生的电磁场,而电磁场在邻近的导线中感应瞬态电流,造成临近的信号失真,甚至错误。串扰的强度取决于器件、导线的几何尺寸及相隔距离。在DSP布线时,信号线间距越大,距离地线越近,就越可以有效地减小串扰。DSP高速PCB抗干扰设计DSP高速PCB抗干扰设计随着DSP(数字信号处理器)的广泛应用,基于DSP的高速信号处理PCB板的设计显得尤为重要。在一个DSP系统中,DSP微处理器的工作频率可高达数百MHz,其复位线、中断线和控制线、集成电路开关、高精度A/D转换电路,以及含有微弱模拟信号的电路都非羞才茁瞧谱偿锄犀绰阁屉驹捷腔毒瑚防嵌粟凰割阉阵岗送臼势浚家擦暇阜急益菊列茶属睁撬咙氢诛宏终毡迄术勤甸巴弓瘪爵托撑遮皂鸵煌冤响晒脂2针对产生干扰的原因设计PCB 下面给出如何在DSP系统的PCB制作过程中减小各种干扰的方法。 在DSP高速数字电路中,为了提高信号质量,降低布线难度,增加系统的EMC,一般采用多层板的层叠式设计。层叠式设计可以提供最短的回流路径,减小耦合面积,抑制差模干扰。在层叠式设计中,分配专门的电源层和地层,并且地层和电源层紧耦合对抑制共模干扰有好处(利用相邻的平面降低电源平面交流阻抗)。以图1所示的
DSP高速PCB抗干扰设计 来自淘豆网m.daumloan.com转载请标明出处.