勾股定理
1、(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.
48
B.
60
C.
76
D.
80
考点:
勾股定理;正方形的性质.
分析:
由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.
解答:
解:∵∠AEB=90°,AE=6,BE=8,
∴在Rt△ABE中,AB2=AE2+BE2=100,
∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE
=100﹣×6×8
=76.
故选C.
点评:
本题考查了勾股定理的运用,△ABE为直角三角形,运用勾股定理及面积公式求解.
5、(2012•泸州)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )
A.
24
B.
16
C.
4
D.
2
考点:
菱形的性质;勾股定理.
分析:
由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.
解答:
解:∵四边形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,
∴在Rt△AOB中,AB==,
∴菱形的周长是:4AB=4.
故选C.
点评:
,注意掌握数形结合思想的应用.
6、(2013泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为( )
考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.
专题:计算题.
分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.
解答:解:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE,
∵DC∥AB,
∴∠BAE=∠DFA,
∴∠DAE=∠DFA,
∴AD=FD,
又F为DC的中点,
∴DF=CF,
∴AD=DF=DC=AB=2,
在Rt△ADG中,根据勾股定理得:AG=,
则AF=2AG=2,
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS),
∴AF=EF,
则AE=2AF=4.
故选B
点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.
1、(2013•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,:
①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论有( )
A.
5个
B.
4个
C.
3个
D.
2个
考点:
相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质
分析:
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.
解答:
解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
∵在△APE和△AME中,
,
∴△APE≌△AME,故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,故②正确;
∵四边形PEOF是矩形,
∴PE=OF,
在直角△OPF中,OF2+PF2=PO2,
∴PE2+PF2
2014中考数学复习资料勾股定理 来自淘豆网m.daumloan.com转载请标明出处.