地基承载力的模糊可靠度分析摘要:地基的稳定在一定程度上可视为一模糊事件,由于影响地基承载力的各种因素常常表现出不同程度的随机变异性,地基承载力也具有随机变异性。本文用Vesic公式确定地基的极限承载力,并建立地基稳定的极限状态方程,进而利用概率理论与模糊数学建立地基失稳的模糊概率公式,对抗剪强度c,φ值的敏感性及安全系数与模糊失效概率之间的关系作了分析。编辑。关键词:地基承载力稳定模糊可靠度1引言我国现行规范是利用地基容许承载力进行基础及地基设计,所采用的容许承载力是利用极限承载力除以定值安全系数而得到的,即所谓的定值安全系数法。在计算极限承载力时使用了传统的定值分析模式,没有考虑各个参数的变异性对极限承载力的影响。即使在强度计算时取用的安全系数来考虑包括参数变异在内的所有不利因素的影响又缺乏一定的科学依据,本质上仍属于定值分析的范畴。事实上,由于各种复杂因素的影响,岩土参数的不确定性不可避免,所以用考虑影响地基稳定的各随机变量的变异性,并用严格的概率来度量安全度,用可靠度理论对地基稳定进行分析更符合实际。概率分析是针对随机事件发生的可能性而言,但事件本身的含义明确。当事件本身的含义具有模糊性,对事件发生与否可能性的描述则用模糊概率的分析方法。就地基的稳定性而言,失稳和稳定本身就是带有一定模糊性的事件,在二者之间存在一个模糊过渡区。本文视地基失稳为一模糊概率事件,利用概率理论与模糊数学建立分析地基失稳的方法及其相应的隶属函数,并对安全系数与模糊可靠度之间的关系作进一步的分析。2 模糊概率的基本概念及其模糊可靠度工程问题的数学模型通常可分为三种:背景对象具有确定性或固定性,且对象又具有必然关系的确定性模型;背景对象具有或然性或随机性的随机性模型;背景对象及其关系均具有模糊性的模糊数学模型。工程中传统的定值分析属于确定性模型,它以定值参数及定值安全系数来衡量工程的安全度。工程中目前使用较多的概率分析法是第二类随机数学模型,它以可靠度作为工程安全的评价标准,从而比定值安全系数法显得更加合理。如果既考虑事件的随机性,又考虑事件的模糊性,则对事件的描述更加科学,此时的评价标准就是模糊失效概率或模糊可靠度。由模糊数学理论可知,如果模糊事件A在区域X上的隶属函数为u,则该模糊事件的概率为: P(A)=∫ 式中 f为X的概率密度函数若区域X是离散区域,则 P(A)=1uaP 则模糊可靠度为: β=Φ-1 3 地基失稳的模糊性及其隶属函数的确定进行地基模糊可靠度分析前,首先要建立地基稳定的极限状态方程。以综合随机变量表示的极限状态方程为: g=fu-s 式中 fu为地基的极限承载力,s为作用于基础底面的点荷载效应,等于恒载与活载之和,即为:s=sG+sq 地基极限承载力的计算公式较多,一般的表达式为:fu=+γdhNq 式中 Nr,Nc,Nq为承载力系数,按Vesic公式有:Nq=tg2exp Nc=ctgφ Nr=2tgφ按传统的非此即彼的思维方法,可知Z<0,地基失效;Z>0地基稳定。实际上地基失效是一个过程,而不是由一个点决定,是一个模糊事件,用uA表示失效程度。当uA接近0时,失效的可能性小;当uA=,处于最模糊状态,可作为传统分析的极限平衡状态;当uA=1时,失效的可能性大,因此公式(3)中z为随机变量,其数字特征值为:E[z]=
地基承载力的模糊可靠度分析 来自淘豆网m.daumloan.com转载请标明出处.