下载此文档

2011年中考数学圆与圆复习题.doc


文档分类:中学教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
圆与圆
知识考点:
1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。
2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。
精典例题:
【例1】如图,⊙O1与⊙O2外切于P,AB是两圆的外公切线,切点为A、B,我们称△PAB为切点三角形,切点三角形具有许多性质,现总结如下:
(1)△PAB是直角三角形,并且∠APB=900;
(2)△PAB的外接圆与连心线O1O2相切;
(3)以O1O2为直径的圆与Rt△PAB的斜边AB相切;
(4)斜边AB是两圆直径的比例中项;
(5)若⊙O1、⊙O2的半径为、,则PA∶PB∶AB=∶∶;
(6)内公切线PC平分斜边AB;
(7)△CO1O2为直角三角形。
这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。

如图2,⊙A和⊙B外切于P,CD为两圆的外公切线,C、D分别为切点,PT为内公切线,PT与CD相交于点T,延长CP、DP分别与两圆相交于点E、F,又⊙A的半径为9,⊙B的半径为4。
(1)求PT的长;
(2)求证:;
(3)试在图中找出是线段PA和PB比例中项的线段,并加以证明。
分析:图中的基本图形是切点三角形,易证T为CD的中点,∠CPD=900,PT即为外公切线长的一半,CF、DE分别为两圆直径,且互相平行,问题就解决了。
略解;(1)作BG⊥AC于G,则CD=BG=
∴PT=CT=TD=CD=6
证明(2)PT=CD,∴∠CPD=900
∴CF、DE分别是⊙A和⊙B的直径
又∵CD切两圆于C、D,∴FC⊥CD,ED⊥CD
∴CF∥DE,∴,∴
(3)图中是PA和PB比例中项的线段有PT、CT、DT(证明略)
【例2】如图,⊙O和⊙内切于点B,⊙经过O,⊙O的弦AE切⊙于点C,AB交⊙于D。
(1)求证:;
(2)设AB=10cm,DC=cm,求AC和BC的长。
分析:两圆相切,常见辅助线是作两圆公切线,作连心线,本题添了这两种辅助线,问题便迎刃而解了。
(1)证明:过B作两圆的公切线BT,证△BCD∽△BEC即可;
(2)解:连结并延长,连结OD
∵⊙O与⊙内切,∴O、、B三点共线
∴BO为⊙的直径
∴OD⊥BD,∴AD=BD=AB=5 cm
∵AC切⊙于C,∴∠4=∠5,又∠A=∠A
∴△ACD∽△ABC,∴
∴,cm
探索与创新:
【问题一】如图,AB为半⊙O的直径,⊙O1与半圆内切于,与AB相切于,⊙O2与半圆内切于,与AB相切于,请比较∠AC1D1与∠AC2D2的大小。
分析:显然O、O1、共线,O、O2、共线,又∵O1D1⊥AB,O2D2⊥AB
∴∠A1C1D1=∠AC1O-∠OC1D1=(∠OO1B-∠OOD1)=∠O1D1O=×900=
450;∠AC2D2=∠AC2O+∠OC2D2=(∠C2OB+∠OO2D2)=×900=450,故∠AC1D1=∠AC2D2。

【问题二】如图,已知圆心A(0,3),⊙A与轴相切,⊙B的圆心在轴的正半轴上,且⊙A与⊙B外切于点P,两圆的公切线MP交轴于点M,交轴于点N。
(1)若

2011年中考数学圆与圆复习题 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-09-30
最近更新