本资料来源于《七彩教育网》
2009年高考数学难点突破专题辅导十八
难点18 不等式的证明策略
不等式的证明,方法灵活多样,,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力.
●难点磁场
(★★★★)已知a>0,b>0,且a+b=1.
求证:(a+)(b+)≥.
●案例探究
[例1]证明不等式(n∈N*)
命题意图:本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力,属★★★★★级题目.
知识依托:本题是一个与自然数n有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等.
错解分析:此题易出现下列放缩错误:
这样只注重形式的统一,而忽略大小关系的错误也是经常发生的.
技巧与方法:本题证法一采用数学归纳法从n=k到n=k+1的过渡采用了放缩法;证法二先放缩,后裂项,有的放矢,直达目标;而证法三运用函数思想,借助单调性,独具匠心,发人深省.
证法一:(1)当n等于1时,不等式左端等于1,右端等于2,所以不等式成立;
(2)假设n=k(k≥1)时,不等式成立,即1+<2,
∴当n=k+1时,不等式成立.
综合(1)、(2)得:当n∈N*时,都有1+<2.
另从k到k+1时的证明还有下列证法:
证法二:对任意k∈N*,都有:
证法三:设f(n)=
那么对任意k∈N* 都有:
∴f(k+1)>f(k)
因此,对任意n∈N* 都有f(n)>f(n-1)>…>f(1)=1>0,
∴
[例2]求使≤a(x>0,y>0)恒成立的a的最小值.
命题意图:本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力,属于★★★★★级题目.
知识依托:该题实质是给定条件求最值的题目,所求a的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值.
错解分析:本题解法三利用三角换元后确定a的取值范围,此时我们习惯是将x、y与cosθ、sinθ来对应进行换元,即令=cosθ,=sinθ(0<θ<),这样也得a≥sinθ+cosθ,:(1)缩小了x、y的范围;(2)这样换元相当于本题又增加了“x、y=1”这样一个条件,显然这是不对的.
技巧与方法:除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a满足不等关系,a≥f(x),则amin=f(x)max;若 a≤f(x),则amax=f(x)min,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题
.还有三角换元法求最值用的恰当好处,可以把原问题转化.
解法一:由于a的值为正数,将已知不等式两边平方,得:
x+y+2≤a2(x+y),即2≤(a2-1)(x+y), ①
∴x,y>0,∴x+y≥2, ②
当且仅当x=y时,②中有等号成立.
比较①、②得a的最小值满足a2-1=1,
∴a2=2,a= (因a>0),∴a的最小值是.
解法二:设.
∵x>0,y>0,∴x+y≥2 (当x=y时“=”成立),
∴≤1,的最大
2009年高考数学难点突破专题辅导十八 来自淘豆网m.daumloan.com转载请标明出处.