下载此文档

2001-2010年天津高考文科数学函数试题部分.doc


文档分类:中学教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
(2010). 已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
(2009). 设函数
(Ⅰ)当曲线处的切线斜率
(Ⅱ)求函数的单调区间与极值;
(Ⅲ)已知函数有三个互不相同的零点0,,且。若对任意的,恒成立,求m的取值范围。
(2008). 设函数,其中.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)若函数仅在处有极值,求的取值范围;
(Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(2007). 设函数(),其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的极大值和极小值;
(Ⅲ)当时,证明存在,使得不等式对任意的恒成立.
(2006). 已知函数其中为参数,且
(I)当时,判断函数是否有极值;
(II)要使函数的极小值大于零,求参数的取值范围;
(III)若对(II)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
(2005). 设函数.
(Ⅰ)证明,其中为k为整数;
(Ⅱ)设为的一个极值点,证明;
(Ⅲ)设在(0,+∞)内的全部极值点按从小到大的顺序排列,
证明
(2004). 已知函数是R上的奇函数,当时取得极值
(1)求的单调区间和极大值;
(2)证明对任意,,不等式恒成立
(2002)
.
(2001). 已知函数在点x=1处有极小值-、
f(x)的单调区间.

2001-2010年天津高考文科数学函数试题部分 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-10-07
最近更新