下载此文档

高中数学三角函数知识点及试题总结材料.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
:sin=0cos=1tan=0sin3=cos3=tan3=sin=cos=tan=1sin6=cos6=tan6=sin9=1cos9=::扇形面积公式:S=----是圆心角且为弧度制。r-----,它的终边上一点p(x,y),r=(1)正弦sin=余弦cos=正切tan=(2)各象限的符号:—++—-xy++O——+xyO—+—+:(1)平方关系:sin2+cos2=1。(2)商数关系:=tan():记忆口诀:奇变偶不变,符号看象限。,,.,,.,,.,,.口诀:函数名称不变,符号看象限.,.,.口诀:正弦与余弦互换,、余弦函数和正切函数的图象与性质倍角公式sin2=2sin·coscos2=cos2-sin2=2cos2-1=1-2sin2两角和与差的三角函数关系sin()=sin·coscos·sincos()=cos·cossin·sin8、三角函数公式:降幂公式:升幂公式:1+cos=cos21-cos=  : .余弦定理:;;.三角形面积定理..:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三边之间的关系:a2+b2=c2。(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义)sinA=cosB=,cosA=sinB=,tanA=。:在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b2+c2-osA;b2=c2+a2-2cacosB;c2=a2+b2-2abcosC。:(1)△=aha=bhb=chc(ha、hb、hc分别表示a、b、c上的高);(2)△=absinC=bcsinA=acsinB;(3)△===;(4)△=2R2sinAsinBsinC。(R为外接圆半径)(5)△=;(6)△=;;(7)△=r·s。:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边),这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC的三边为a、b、c,对应的三个角为A、B、C。(1)角与角关系:A+B+C=π;(2)边与边关系:a+b>c,b+c>a,c+a>b,a-b<c,b-c<a,c-a>b;(3)边与角关系:正弦定理(R为外接圆半径);余弦定理c2=a2+b2-osC,b2=a2+c2-osB,a2=b2+c2-osA;它们的变形形式有:a=2RsinA,,。,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。(1)角的变换因为在△ABC中,A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。;(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。r为三角形内切圆半径,p为周长之半。(3)在△ABC中,熟记并会证明:∠A,∠B,∠C成等差数列的充分必要条件是∠B=60°;△ABC是正三角形的充分必要条件是∠A,∠B,∠C成等差数列且a,b,c成等比数列。四.【典例解析】题型1:正、余弦定理(2009岳阳一中第四次月考).已知△中,,,,,,则()A...(1)在中,已知,,cm,解三角形;(2)在中,已知cm,cm,,解三角形(角度精确到,边长精确到1cm)。例2.(1)在ABC中,已知,,,求b及A;(2)在ABC中,已知,,,解三角形解析:(1)∵=cos==∴求可以利用余弦定理,也可以利用正弦定理:解法一:∵cos ∴(2)由余弦定理的推论得:cos;cos ;,,,,求的值和的面积。又,,。例4.(2009湖南卷文)在锐角中,则的值等于, 2解析设由正弦定理得由锐角得,又,故,例5.(2009浙江理)(本题满分14分)在中,角所对的边分别为,且满足

高中数学三角函数知识点及试题总结材料 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人beny00001
  • 文件大小1.06 MB
  • 时间2019-04-12