应用Stata做logistic回归*实际生活中经常会遇到因变量只有0和1的二分类变量,不能满足正态性和方差齐性,故不能直接使用线性模型来拟合方程。Logistic回归正是处理因变量是二分类或多分类变量的一种方法。现已广泛应用于队列研究,病例对照研究和试验性研究,成为分类因变量的首选多变量分析模型。*分类按因变量性质,可分为二分类、无序多分类、有序多分类。按是否匹配可分为非条件和条件logistic回归。*Stata软件专门有一组命令用于做不同类型的logistic回归,例如:logit、blogit、glogit、clogit、mlogit、ologit。*:logit因变量[自变量][,选择项]在进行logistic回归时要注意资料的形式。通常,用于logistic回归的资料有三种形式:(1)分水平频数资料,一般自变量较少,且均为分类变量,常以各变量(包括因变量、自变量)各水平的组合的频数表形式出现。如例1。拟合时仍用上述命令,只是命令中增加[fw=频数变量]选择项。*(2)分组频数资料,一般自变量较少,且均为分类变量,常以各自变量(不包括因变量)各水平的组合的频数表形式出现,因变量常表达为分子与分母。如例2。用下列命令:blogit阳性数变量总观察数变量[,logit命令选择项]或glogit阳性数变量总观察数变量[,level(#)or](3)个体水平资料,即一个观察对象一条记录。如例3,直接使用logit命令估计即可。拟合模型后可以用指令predict得到预测概率,然后进行模型诊断、应用等。*例1本例是探讨妇女使用雌激素与患子宫内膜癌之间关系的病例-对照研究资料,见表1,请计算OR及其95%可信区间。再用logistic回归估计参数,写出回归方程,并说明回归系数与OR的关系。**
做logistic回归ppt课件 来自淘豆网m.daumloan.com转载请标明出处.