虽然原子核的概念是卢瑟福在1911年进行了α粒子散射实验后才提出的,在此之前很多现象的发现也应归入原子核物理学的范畴,因此从历史上看原子物理学和原子核物理学在量子力学诞生之前就早已存在。不过,原子核物理学在1932年英国物理学家詹姆斯·查德威克爵士发现中子以前一直处于经验性的研究阶段,这期间的代表性发现包括:1896年法国物理学家亨利·贝可勒尔发现天然放射性;居里夫妇于1898年发现放射性元素钋、1902年发现放射性元素镭;从镭的放射性中,卢瑟福发现了α射线和β射线、法国物理学家保罗·维拉德于1900年发现γ射线,而卢瑟福和贝可勒尔等人又通过实验进一步判断了这几种射线的本质;1917年,卢瑟福使用α粒子(氦核)轰击氮原子,从中得到了氢原子核。在经历了二十世纪二十年代的一个短暂低潮之后,量子力学的建立给原子核物理带来了崭新的面貌。1932年密立根的学生卡尔·安德森在不了解狄拉克理论的情况下通过观测云室中的宇宙射线发现了正电子。同年,查德威克在卢瑟福提出的原子核内具有中子的假说的基础上,在卡文迪许实验室进行了一系列粒子撞击实验,并计算了相应粒子的能量。查德威克的实验证实了原子核内中子的存在,并测定了中子的质量。中子的发现改变了原子核原有的质子-电子模型,建立了新的质子-中子模型。1933年,法国的约里奥·居里夫妇通过用氦核轰击铝箔得到了磷的同位素(磷30),他们发现磷的同位素会衰变成硅30,这个现象导致了他们发现了人工放射性。1934年,意大利物理学家恩里科·费米在用中子轰击当时已知的最重元素——92号元素铀时,得到了一种半衰期为13分钟的放射性元素,但它不属于任何一种已知的重元素。费米等人怀疑它是一种未知的原子序数为93的超铀元素,但在当时的条件下他无法做出判断。同年,费米又通过用中子和氢核碰撞获得了慢中子,慢中子的产生大大加强了中子在原子核实验中的轰击效果。1938年德国化学家奥托·哈恩和弗里茨·斯特拉斯曼用慢中子轰击铀,从中得到了较轻的元素:镧和钡。哈恩将这一结果发信给当时受纳粹迫害而流亡中的好友,奥利地-瑞典物理学家莉泽·迈特纳,称自己发现了一种“破裂”的现象。迈特纳次年在玻尔的肯定下发表了论文《中子导致的铀的裂体:一种新的核反应》,将这种现象称作核裂变,并为裂变提供了理论上的解释。迈特纳所用的解释就是爱因斯坦的狭义相对论中的质能等价关系,从而解释了裂变中产生的巨大能量的来源。她计算出每个裂变的原子核会释放2亿电子伏特的能量,这一理论解释奠定了应用原子能的基础。同年,德国-美国物理学家汉斯·贝特解释了恒星内部的核聚变循环。粒子物理学介子的发现粒子物理学是原子物理和原子核物理在高能领域的一个重要分支,相对于偏重于实验观测的原子核物理学,粒子物理更注重对基本粒子的物理本性的研究。就实验方面而言,研究粒子物理所需的能量往往要比原子核物理所需的高得多,在回旋加速器发明以前,很多新粒子都是在宇宙射线中发现的,如正电子。1935年,日本物理学家汤川秀树提出了第一个重要的核子间强相互作用的理论,从而解释了原子核内的质子和中子如何束缚在一起的。在汤川的理论中,核子间的作用力是靠一种虚粒子——介子来完成的。介子所传递的强相互作用能够解释原子核为何不在质子间相对较弱的电磁斥力下崩塌,而介子本身具有的两百多倍电子静止质量也能解释为什么强相互作用相比于电磁相互作用具有短
现代物理学 来自淘豆网m.daumloan.com转载请标明出处.