Chapter 14 The CAPM ---Applications and tests Fan Longzhen Predictions and applications • CAPM: in market equilibrium, investors are only rewarded for bearing the market risk; • APT: in the absence of arbitrage, investors are only rewarded for bearing the factor risk; • Applications: •---professional portfolio managers: evaluating security returns and fund performance •---corporate manager: capital budgeting decisions. Early tests of CAPM • Cross-sectional test of the model: • Douglas (1969); • Miller and Scholes (1972); • Black, Jensen and Scholes (1972); • Fama and Macbeth (1973) E(Ri ) = R f + βi (E[Rm ] − R f ) Rγ= + ˆ+ e , i = 1,2,...,n i γ0 1 i i ? β γˆ R 0 = f ? γˆ R − R 1 = m f continued • Douglas (1969) • Adds own-variance to regression significant; 2 • Linter addsσˆ( e i ) to regression significant; • Miller and Scholes (1972) • Measurement error in ˆ‘s; βi 2 • Correlation between measurement error and σˆ(ei ) • Skewness of returns . • Black, Jensen, and Scholes (1972) Rit − R f = αi + βi (Rmt − R f ) + eit • Time-series test ? α=0 • Use portfolio to maximize dispersion of beta’s i • Low βˆ stocks positive αˆi ' s αˆ' s • High βˆ stocks negative i Hypothesis testing • Definition of size and power • H true H false • Accept correct Type II error • Reject type I error correct • Size=Pr(Type I error); • Power=1-Pr(type II error); • Tradeoff between size and power; • Fix size, find most powerful test. CAPM test X it = αi + βi X mt + eit X it ≡ Rit − R ft , X mt ≡ Rmt − R ft • CAPM holds αα= 0 σi 2 2 • e µ m Var[ ˆi ] ≡ Vα= (1+ 2 ) T σ m •H: αˆi ~ N(0,Vα) Some numbers for monthly . data,1985-1989 σ ˆˆ • S&P500 T-bills: T=60, µm = ,σ m = 2 Vˆ= e (1+ ) = 2 α 60 e 2 • What is σ e ? Rit =σαi + βi Rmt + eit •βσ market model 2 = 2 2 + σ 2 • i i m e ˆ 2 2 •σ i = for typical NYSE stock •ρ= for typical NYSE stock
CHPT14- The CAPM ---test 来自淘豆网m.daumloan.com转载请标明出处.