蒅1硫酸腐蚀原理及特点蚀表1市面上的硫酸常见的浓度、状态及腐蚀特点肈浓度薅状态膆腐蚀性螁特点备注蒁<5%芈特稀硫酸溶液蚂电化学腐蚀为主,腐蚀性一般袂1)65%浓度以下的稀硫酸在所有温度都为还原性;蕿2)稀硫酸对碳钢的腐蚀速率随浓度的提高而增强;达到一定浓度后(47%~50%是电化学腐蚀速度的峰值点),腐蚀速率随浓度的提高而急剧下降;蚈3)同一浓度的稀硫酸随着温度的增加,腐蚀性会加大;蒃4)杂质对腐蚀也有很大的影响,如含氟、氯等其他离子;蚀5)介质流速越大、固相颗粒多也会加剧稀硫酸溶液的腐蚀性。蚇5~65%膇稀硫酸溶液膃电化学腐蚀为主,腐蚀性非常强肀65~85%薆浓硫酸溶液羃电化学腐蚀为主螃1)65%~85%硫酸低温下为还原性,高温或沸点下为氧化性;膈2)85%~100%硫酸及发烟硫酸在所有温度下都呈氧化性;羆3)浓硫酸具有吸水性,空气中水份也会使敞空的浓硫酸变稀,对碳钢的腐蚀性增大;蚄4)65%~85%期间,随温度上升,其对碳钢的腐蚀速率下降;薀5)碳钢在80%~100%的硫酸中可形成钝化保护膜,在无流速、无冲刷、无充气、密封时可耐受60℃~80℃;蒀6)102%以上的发烟硫酸,会破坏钝化膜,腐蚀速度上升,碳钢和铸铁耐不了。120%的发烟硫酸是氧化性腐蚀的峰值点。莅85~100%莄高浓度硫酸薁氧化性腐蚀为主肈>100%膄发烟硫酸蚃氧化性腐蚀为主薈硫酸金属储罐外壁腐蚀主要为气相腐蚀,只是弱腐蚀,一般采取涂装防腐即可,不是这里讨论的重点。袅碳钢在硫酸中发生的腐蚀过程是典型的电化学腐蚀。其化学反应式表述如下:蒀Fe+H2S04→H2+FeS04肀 金属材料的本质、表面状态及金属阴极相杂质、硫酸浓度(pH值)、温度都会影响到金属的氢去极化腐蚀。此外,一些物理因素如介质流速、固相颗粒、结垢等也会影响硫酸的腐蚀性。、塑料储罐和玻璃钢储罐,也分为压力容器类和非压力容器类硫酸储罐,还分为立式和卧式硫酸储罐。本文仅讨论常压硫酸储罐。芈硫酸不存在较大的蒸汽压力,无需采用内浮盘。为隔离空气及雨水等杂质,需要用固定顶保护罐内介质,一般采取自支撑的固定顶,且应将加强肋等支撑件设置在罐顶外壁,并保证在液位下的部件不存在裂纹等缺陷。从安全角度出发,一般不在罐顶设置操作平台,为便于操作、检修,可以设置独立的操作平台。若必须设置罐顶平台,则在罐顶设计时,应充分考虑包括顶部平台、管支架等相关设施的设备自重和相关设备带来的附加载荷的影响。莇材料选定后,硫酸储罐的罐体厚度,可按相关标准进行计算或选定,与其它储罐的设计是一样的,只不过与普通介质的储罐相比,钢制硫酸储罐需要采用较大的腐蚀裕量。碳钢罐尽量同时使用阳极保护,此时的腐蚀裕量也需要足足3mm厚,合金罐、塑料罐、FRP罐或其他衬里罐则一般无需预留腐蚀裕量[2]。:硫酸入口,硫酸出口,溢流口,放空口(压力阀口),顶部人孔,清扫孔。薀为减少泄漏,硫酸入口一般设置在罐顶,并使管口距离罐壁至少1200mm。但有时由于条件限制,也将人口设置在靠近顶部的罐壁处。硫酸入口一般应采用汲取管的方式,即将管口内伸至液面下。对侧壁入口,则可用90℃弯头使管线在罐内保持竖直状态并达到上述要求。为保护罐底,在罐底正对入口管末端的相应位置设置防冲板。为防止介质的虹吸现象,硫酸人口管线应开放空孔,一般只需要在管线的上部开一个12mm的孔即可。螆硫酸出口一般也采取内伸汲取管的方式,且多采用可拆式结构,为便于拆卸,外套管直径一般取硫酸出口管直径的2倍以上。硫酸出口也可设计成齐平接管的形式。为避免充液过多而引起硫酸大量外溢,需要在罐壁的上部设置溢流管口,该管口与罐壁内表面平齐;也可不设置该管口,而直接利用高液位仪表控制进料管线上的切断阀来达到目的。膆为保护罐壁,所有罐顶的接管都需要内伸至少25mm;管壁的接管,除溢流口或齐平出口外,都应在管口上部180℃范围内伸至少25mm。一般情况下,放空管(压力阀口)应设置在罐的最高处,且与罐顶内表面齐平,若储罐建在室内,还应将放空口引至室外。对直接放空到大气的管口,还应配置180℃弯头和丝网。莀为保证硫酸金属储罐具有良好的耐腐蚀性,所有位于液位下的焊缝,均应为全焊透对接结构,并进行局部X射线检测。罐顶可以采用搭接焊缝。所有的罐底焊缝,应为带垫板的全焊透对接焊缝,罐底应按标准进行真空箱试验。罐壁和罐底内表面还应增加磁粉或液体渗透检验。虿由于硫酸的蒸汽压力不大,为确保安全,除非另有要求,;由于承插焊及螺纹法兰等法兰的内在结构,决定了更容易产生腐蚀,因此,应尽量避免使用这类法兰。当需要采用弯头时,为减少磨损腐蚀应力和腐蚀开裂,应尽量采用内部有涂层保护和曲率半径较大的无缝弯头
硫酸储罐设计 来自淘豆网m.daumloan.com转载请标明出处.