下载此文档

高中数学不等式知识点.doc


文档分类:中学教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:2、不等式的性质:(1),(反对称性)(2),(传递性)(3),故(移项法则)推论:(同向不等式相加)(4),推论1:推论2:推论3:不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。3、常用的基本不等式和重要的不等式(1)当且仅当(2)(3),则(4)4、最值定理:设(1)如积(2)如积即:积定和最小,和定积最大。运用最值定理求最值的三要素:一正二定三相等5、均值不等式:两个正数的均值不等式:三个正数的均值不等是:n个正数的均值不等式:6、四种均值的关系:两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系是小结:在不等式的性质中,要特别注意下面4点:1、不等式的传递性:若a>b,b>c,则a>c,这是放缩法的依据,在运用传递性时,要注意不等式的方向,否则易产生这样的错误:为证明a>c,选择中间量b,在证出a>b,c>b,后,就误认为能得到a>c。2、同向不等式可相加但不能相减,即由a>b,c>d,可以得出a+c>b+d,但不能得a—c>b—d。3、不等式两边同时乘以一个数或式时,只有该数或式保证为正,才能得到同向的不等式,否则不能保证所乘之数或式为正,则不等式两边同时乘以该数或式后不能确定不等式的方向;不等式两边同偶次乘方时,也要特别注意不等式的两边必须是正。不等式的应用范围十分广泛,在数学中,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。二、不等式的证明方法(1)比较法:作差比较:作差比较的步骤:①作差:对要比较大小的两个数(或式)作差。②变形:对差进行因式分解或配方成几个数(或式)的完全平方和。③判断差的符号:结合变形的结果及题设条件判断差的符号。注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)综合法:由因导果由已知的不等式出发,不断地用必要条件代替前面的不等式,直到推导出前面的不等式。常用的基本不等式有均值不等式;‚若,,则;ƒ若,则;④柯西不等式(3)分析法:执果索因基本步骤:要证……只需证……,只需证……①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达。(4)反证法:正难则反直接证明难,就用反证。(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的放缩法的方法有:①添加或舍去一些项,如:;;②将分子或分母放大(或缩小)③利用基本不等式,如:;④利用常用结论:Ⅰ、;Ⅱ、;(程度大)Ⅲ、;(程度小)(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如:已知,可设;已知,可设();已知,可设;已知,可设;(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。数学归纳法法证明不等式将在数学归纳法中专门研究。例1已知a,b∈R,且a+b=1。求证:。证法一:(比较法)即(当且仅当时,取等号)。证法二:(分析法)因为显然成立,所以原不等式成立。点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件。证法三:(综合法)由上分析法逆推获证(略)。证法四:(反证法)假设,则。由a+b=1,得,于是有所以,这与矛盾。所以。证法五:(放缩法)∵∴左边==右边。点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式。证法六:(均值换元法)∵,所以可设,,∴左边==右边当且仅当t=0时,等号成立。点评:形如a+b=1结构式的条件,一般可以采用均值换元证法七:(利用一元二次方程根的判别式法)设y=(a+2)2+(b+2)2,由a+b=1,有,所以,因为,所以,即。故。例2,求证:。证:,同样地,利用均值不等式,我们可以得到,即。例3已知,求证。证:例4已知,求的最大值。解:由题可得当且仅当即时等式成立。同理,可得;,求证证:令,且,于是。例6已知是正整数,求证:证:当时,有于是小结:1、掌握好不等式的证明,不等式的证明内容甚广,证明不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面。如与数列

高中数学不等式知识点 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人459972402
  • 文件大小435 KB
  • 时间2019-05-30