万方数据
中文摘要分布估计算法虺艵窃谝糯惴ǖ幕础之上发展起来的,与遗传算法不同,它不使用交叉和变异算子,而是根据当前种群中适应值较好的个体建立概率分布模型,然后根据估计的模型进行采样得到新的个体,以此来引导算法的搜索。基于理论的分布估计算法,把对优势群体的概率模型的估计分为两部分进行,即对各变量边缘分布的估计和一个函数的选取,通过函数将各变量的边缘分布连接成它们的联合分布。它的优点在于不仅简化了估计概率模型的运算复杂度,而且能够充分反映变量之间的关系。在算法中,边缘分布的选取对算法的优化效果有很大的影响,因此,本文选择函数作为连接函数,首先选择经验分布和正态分布作为边缘分布函数,对两者的优化结果进行了分析比较,结果发现采用正态分布作为边缘分布的优化结果比较好,同时也发现虽然采用正态分布的结果比较好,但是其对某些函数的优化结果存在一种早熟现象。进一步对边缘分布采用正态分布作了理论上的分析,发现方差的过快收敛是导致算法产生早熟的主要原因,说明只有在算法进化过程中对方差的大小进行适当的控制才能得到更好的优化结果。为解决这个问题对已有的调节方差的算法进行了研究,最后将一种白适应方差的模型应用到算法中,提出了一种自适应方差模型的,并对该算法进行了实验仿真验证,结果表明该方法不仅解决了早熟问题而且能够快速找到优化问题的最优解。关键词:分布估计算法,理论,函数,边缘分布,经验分布,正态分布
万方数据
万方数据
琁疭,;;,痶,,瑃..,琣.,甀瑃,瓻;;;.
万方数据
万方数据
目录第一章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..分布估计算法的研究背景和意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一分布估计算法概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..分布估计算法研究现状⋯⋯⋯⋯⋯一⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一本文的主要内容和结构安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一第二章分布估计算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯理论简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯理论的基础知识⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.】二元函数的定义及其性质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.嘣猚亩ㄒ寮捌湫灾省函数的分类及特点⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..多元分布的ɡ怼基于理论的分布估计算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分布估讨‘算法的基本框架⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.从函数采样⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第三章边缘分布的选取⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯经验分布函数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯对经验分柿函数的采样⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯正态分布函数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯对正态分布函数的采样⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯仿真实验与结果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:第四章自适应模型的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.进化策略中的白适应模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分布估计算法中的自适应模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.
万方数据
中的自适应模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯...⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.第五章总结与展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..研究生在读期间参加的研究项目及论文发表情况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
万方数据
第一章绪论分布估计算法的研究背景和意义分布估计算法虺艵悄壳敖扑懔域的研究热点,也是解决工程问题的有效方法,它的优点在于它采用了一种全新的进化模式,具体的说,它先选择出种群中较好的个体,然后根据这些个体在空间的分布情况,建立满足这些分布的概率模型,并且通过概率模型来指导生成新的种群,以此来搜索问题的解空间。这个新的算法在解决目前一些比较复杂的问题上显示了良好的优势,虽然它在年才‘提出,但是发展迅
Clayton+Copula分布估计算法中边缘分布的研究 来自淘豆网m.daumloan.com转载请标明出处.