下载此文档

主成分分析法.doc


文档分类:高等教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
4,主成分分析法主成分分析(ponentAnalysis,PCA),是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。(KarlPearson)对非随机变量引入的,。信息的大小通常用离差平方和或方差来衡量。,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1,F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。【1】、原始指标数据的标准化采集p维随机向量,n个样品 n>p,构造样本阵,对样本阵元进行如下标准化变换: 其中,得标准化阵Z。 2、对标准化阵Z求相关系数矩阵其中 3、解样本相关矩阵R的特征方程得p个特征根,确定主成分按 确定m值,使信息的利用率达85%以上, 4、将标准化后的指标变量转换为主成分称为第一主成分, 称为第二主成分,…, 称为第p主成分。 5、对m个主成分进行综合评价对m个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。: ①可消除评估指标之间的相关影响。因为主成分分析法在对原始数据指标变量进行变换后形成了彼此相互独立的主成分,而且实践证明指标间相关程度越高,主成分分析效果越好。②可减少指标选择的工作量,对于其他评估方法,由于难以消除评估指标间的相关影响,所以选择指标时要花费不少精力,而主成分分析法由于可以消除这种相关影响,所以在指标选择上相对容易些。③主成分分析中各主成分是按方差大小依次排列顺序的,在分析问题时,可以舍弃一部分主成分,只取前面方差较大的几个主成分来代表原变量,从而减少了计算工作量。用主成分分析法作综合评估时,由于选择的原则是累计贡献率≥85%,不至于因为节省了工作量却把关键指标漏掉而影响评估结果。缺点: ①在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较

主成分分析法 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cjc201601
  • 文件大小47 KB
  • 时间2019-06-13
最近更新