(RJ).(难点)°.(重点)我的形状最小,,,我有一个钝角,,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,,任意一个三角形的内角和等于180°.与三角形的形状、大小无关,:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢?折叠还可以用拼接的方法,你知道怎样操作吗?,,你能发现证明的思路吗?还有其他的拼接方法吗?讲授新课三角形的内角和定理的证明一探究:在纸上任意画一个三角形,°.求证:∠A+∠B+∠C=180°.已知:△:过点A作l∥BC,∴∠B=∠1.(两直线平行,内错角相等)∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.12证法2:延长BC到D,过点C作CE∥BA,∴∠A=∠1.(两直线平行,内错角相等)∠B=∠2.(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.CBAED12CBAEDF证法3:过D作DE∥AC,作DF∥AB.∴∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴∠A=∠EDF.∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°.想一想:同学们还有其他的方法吗?思考:多种方法证明三角形内角和等于180°的核心是什么?借助平行线的“移角”的功能,,为了证明的需要,,°,转化为一个平角或同旁内角互补等,
1121时三角形的内角和 来自淘豆网m.daumloan.com转载请标明出处.