勾股定理[内容],掌握勾股定理的内容,初步会用它进行有关的计算、,,;、激发兴趣引入课题通过介绍我国数学家华罗庚的建议——向宇宙发射勾股定理的图形与外星人联系,并说明勾股定理是我国古代数学家于2000年前就发现了的,激发学生对勾股定理的兴趣和自豪感,、勾股定理的探索,?:(1)在△ABC中,∠A,∠B,∠C所对边分别为a,b和c,∠ACB=90°,使△ABC运动起来,但始终保持∠ACB=90°,如拖动A点或B点改变a,b的长度来拖动AB边绕任一点旋转△ACB等.(2)在以上过程中,始终测算a2,b2,c2,各取以上典型运动的某一两个状态的测算值(约7~8个)列成表格,让学生观察三个数之间有何数量关系,得出猜想.(3)对比显示锐角三角形、钝角三角形的三边的平方不存在这种关系,,画图及写出已知、,连美国第20届总统加菲尔德于1881年也提供了一面积证法(见课本第109页图(4)),而我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法,下面咱们采纳其中一种(教师制作教具演示,见如图3-151)来进行证明. “勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢?(1)介绍《周髀算经》中对勾股定理的记载;(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;(3)对比以上事实对学生进行爱国主义教育,、△ABC中,∠C=90°,∠A,∠B,∠C所对边分别为a,b,c.(1)a=6,b=8求c及斜边上的高;(2)a=40,c=41,求b;(3)b=15,=25求a;(4)a:b=3:4,c=15,:对于(1),让学生总结基本图形(图3-153)中利用面积求斜边上高的基本方法;对于(4),(1),(4)的规范过程,让学生练习(2),(3).例2求图3-152所示(单位mm)矩形零件上两孔中心A和B的距离().教师就如何根据图纸上尺寸寻找直角三角形ABC中的已知条件,:(1)在等腰Rt△ABC中,∠C=90°,AC:BC:AB=__________;(2)如图3-153∠ACB=90°,∠A=30°,则BC:AC:AB=___________;若AB=8,则AC=_____________;又若CD⊥AB,则CD=______________.(3)等边出△ABC的边长为a,则高AD=__________,S△ABC=______________说明:(1)学会利用方程的思想来解决问题.(2)通过此题让学生总结并熟悉几个基本图形中的常用结论:①等腰直角三
[教学设计]勾股定理 来自淘豆网m.daumloan.com转载请标明出处.