2019年四年级数学上学期应用题练习18 ~6这六个数分别填入左下图中的六个○内,使得三条直线上的数字的和都相等。 ~8这八个数分别填入右上图中的八个方格内,使上面四格、下面四格、左边四格、右边四格、中间四格及四角四格内四个数相加的和都是18。 ,使得每行、每列以及每条对角线上的方格中的四个数都是1,2,3,4。 ~8填入右上图的八个空格中,使得横、竖、对角任何两个相邻空格中的数都不是相邻的两个自然数。 ,去掉9和15还剩八个奇数。将这八个奇数填入右图的八个○中(其中3已填好),使得用箭头连接起来的四个数之和都相等。 ○内各填入一个质数,使每个小三角形(共6个)的三个顶点数之和都相等,且为尽量小的质数。 ~13中选出12个自然数填入右上图的空格中,使每横行四数之和相等,每竖列三数之和也相等。附送:2019年四年级数学上学期找规律分析与讲解整数a与它本身的乘积,即a×a叫做这个数的平方,记作a2,即a2=a×a;同样,三个a的乘积叫做a的三次方,记作a3,即a3=a×a×a。一般地,n个a相乘,叫做a的n次方,记作an,即本讲主要讲an的个位数的变化规律,以及an除以某数所得余数的变化规律。因为积的个位数只与被乘数的个位数和乘数的个位数有关,所以an的个位数只与a的个位数有关,而a的个位数只有0,1,2,…,9共十种情况,故我们只需讨论这十种情况。为了找出一个整数a自乘n次后,乘积的个位数字的变化规律,我们列出下页的表格,看看a,a2,a3,a4,…的个位数字各是什么。从表看出,an的个位数字的变化规律可分为三类: (1)当a的个位数是0,1,5,6时,an的个位数仍然是0,1,5,6。(2)当a的个位数是4,9时,随着n的增大,an的个位数按每两个数为一周期循环出现。其中a的个位数是4时,按4,6的顺序循环出现;a的个位数是9时,按9,1的顺序循环出现。(3)当a的个位数是2,3,7,8时,随着n的增大,an的个位数按每四个数为一周期循环出现。其中a的个位数是2时,按2,4,8,6的顺序循环出现;a的个位数是3时,按3,9,7,1的顺序循环出现;当a的个位数是7时,按7,9,3,1的顺序循环出现;当a的个位数是8时,按8,4,2,6的顺序循环出现。例1求67999的个位数字。分析与解:因为67的个位数是7,所以67n的个位数随着n的增大,按7,9,3,1四个数的顺序循环出现。 999÷4=249……3, 所以67999的个位数字与73的个位数字相同,即67999的个位数字是3。例2求291+3291的个位数字。分析与解:因为2n的个位数字按2,4,8,6四个数的顺序循环出现,91÷4=22……3,所以,291的个位数字与23的个位数字相同,等于8。类似地,3n的个位数字按3,9,7,1四个数的顺序循环出现, 291÷4=72……3, 所以3291与33的个位数相同,等于7。最后得到291+3291的个位数字与8+7的个位数字相同,等于5。例3求28128-2929的个位数字。解:由128÷4=32知,28128的个位数与84的个位数相同,等于6。由29÷2=14……1知,2929的个位数与91的个位数相同,等于9。因为6<9,在减法中需
2019年四年级数学上学期应用题练习18 来自淘豆网m.daumloan.com转载请标明出处.