(1)正角,,并规定了旋转的正方向,就出现了正角,负角和零角,这样角的大小就不再限于00到3600的范围.(3)终边相同的角,具有共同的绐边和终边的角叫终边相同的角,所有与角终边相同的角(包含角在内)的集合为.(4)角在“到”范围内,指.(2),始边与轴的非负半轴重合,这样当角的终边在第几象限,就说这个角是第几象限的角,若角的终边与坐标轴重合,这个角不属于任一象限,、基本概念:一、任意角的三角函数1、角的概念的推广正角负角oxy的终边的终边零角二、象限角:注:如果角的终边在坐标轴上,则该角不是象限角。三、所有与角终边相同的角,连同角在内,构成集合:(角度制)(弧度制)例1、求在到()范围内,与下列各角终边相同的角原点x轴的非负半轴一、在直角坐标系内讨论角,角的顶点与重合,角的始边与重合。逆时针旋转为正,顺时针旋转为负。角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。1、终边相同的角与相等角的区别终边相同的角不一定相等,相等的角终边一定相同。2、象限角、象间角与区间角的区别3、角的终边落在“射线上”、“直线上”及“互相垂直的两条直线上”的一般表示式三、终边相同的角(1)与角终边相同的角的集合:{|=2k+,k∈Z}.(2)象限角、象限界角(轴线角)①象限角第一象限角:(2k<<2k+,kZ)2第二象限角:(2k+<<2k+,kZ)2第三象限角:(2k+<<2k+,kZ)23第四象限角:2(2k+<<2k+2,kZ或2k-<<2k,kZ)23一、角的基本概念②轴线角x轴的非负半轴:=k360º(2k)(kZ);x轴的非正半轴:=k360º+180º(2k+)(kZ);y轴的非负半轴:=k360º+90º(2k+)(kZ);2y轴的非正半轴:=k360º+270º(2k+)或=k360º-90º(2k-)(kZ);232x轴:=k180º(k)(kZ);y轴:=k180º+90º(k+)(kZ);2坐标轴:=k90º()(kZ).2k例2、(1)、终边落在x轴上的角度集合:(2)、终边落在y轴上的角度集合:(3)、终边落在象限平分线上的角度集合:典型例题各个象限的半角范围可以用下图记忆,图中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第一、二、三、四象限角的半角范围;,问α/2是哪个象限的角?2α是哪个象限的角?高考试题精选及分析C点评:本题先由α所在象限确定α/2所在象限,再α/:解:分针所转过的角度例2已知a是第二象限角,判断下列各角是第几象限角(1)(2)评析:在解选择题或填空题时,如求角所在象限,也可以不讨论k的几种情况,如图所示利用图形来判断.
数学必修四知识点总结 来自淘豆网m.daumloan.com转载请标明出处.