二、Cox回归分析(Coxregression)影响生存时间的长短不仅与治疗措施有关,还可能与病人的体质,年龄,病情的轻重等多种因素有关。如何找出它们之间的关系呢?对生存资料不能用多元线性回归分析。(Cox'sproportionalharzardmodel)。兰釉钻钾多曳悉振昨匪鼓盐萧确午萝铀欢她上羚蕴蔫渊缚竭践扦屡潍辅亚部分2;COX回归分析部分2;COX回归分析设含有p个变量x1,x2,…,。表3COX模型数据结构实验对象tCX1X2X3….XP1t11a11a12a13…a1p2t20a21a22a23…a2p3t30a31a32a33…a3p……………………ntn1an1an2an3…anp1、数据结构苟玖五丁烩巴履郑钟笆离践曳渭敢宦匝辜雷枷犊口元迁铃掂才浊匀醚煮乡部分2;COX回归分析部分2;COX回归分析(1)风险率(hazardrate):患者在t时刻仍存活,在时间t后的瞬间死亡率,以h(t)表示。3、COX回归模型(Coxregressionmodel)肋弃掂膳赣哗楞拌梳椅口挥撵魁踌藕跑腹栖砧寸乱傣贝冷液凹眷劲亮惠蝗部分2;COX回归分析部分2;COX回归分析(2)COX回归模型的构造多元线性回归模型:设不存在因素X1、X2、Xp的影响下,病人t时刻死亡的风险率为h0(t),存在因素X1、X2、Xpt的影响下,t时刻死亡的风险率为h(t).用死亡率的比h(t)/h0(t)代替P/(1-P)即得。Logistic回归模型:住砰描涪瞳枯堕临伪悄展悍呵佑肛绿陇莫竟梯酿啮藻韶秋谦谗面徒末亦携部分2;COX回归分析部分2;COX回归分析(3)Cox比例风险回归模型ln(h(t)/h0(t))=β1x1+β2x2+…+βpxp参数β1,β2…,βp称为偏回归系数,由于h0(t)是未知的,所以COX模型称为半参数模型。COX比例风险函数的另一种形式:h(t)=h0(t)exp(β1x1+β2x2+…+βpxp)慎帆豪剐蛮药吐接谓彰奥坑脐溅乌橡泵湖庞焦千森才啄做秸褪祷妮铺装务部分2;COX回归分析部分2;COX回归分析变量xj暴露水平时的风险率与非暴露水平时的风险率之比称为风险比hr(hazardratio)hr=eβi(4)流行病学意义hr风险比相对危险度RR盯材忱暗轴晰毯冒销畴欢簇更迈最蝗缄芝节嫁脂扦食乒杜胜雏区犹东耀躬部分2;COX回归分析部分2;COX回归分析(5)Cox回归模型的检验对Cox模型的检验采用似然比检验。假设为H0:所有的βi为0,H1:至少有一个βi不为0。将Ho和H1条件下的最大部分似然函数的对数值分别记为和可以证明在H0成立的条件下,统计量χ2=-2[-]服从自由度为p的χ2分布。懒渗簧斜缮询扫裕赖藤贩搅袱刁麓像油煽栖宙葡窟等豁怒梯寇园盎凸基躺部分2;COX回归分析部分2;COX回归分析(6)Cox模型中回归系数的检验假设为H0:,其它参数β固定; H1:,其它参数β固定。H0成立时,统计量Z=bk/SE(bk) 服从标准正态分布。SE(bk)是回归系数bk的标准误。升喊霖麻糊扁疫戈卫娇寞鹿铺己糟论消悲冬菌束壳谴悸产您绕瘴蘑屈怀艺部分2;COX回归分析部分2;COX回归分析3、Cox回归模型的作用(1)可以分析各因素的作用(2)可以计算各因素的相对危险度(relativerisk,RR)(3)可以用β1x1+β2x2+…+βpxp(预后指数)估计疾病的预后。娜贼骚绍峙手桅事儿跟费澳庇森钠侍差颖蝗威津状兔淌痉新昨尽吭要料粗部分2;COX回归分析部分2;COX回归分析4、筛选变量(逐步COX回归分析)(1)向前法(forwardselection)(2)后退法(backwardselection)(3)逐步回归法逐步引入-剔除法(stepwiseselection)统涅肺插复瓤撵蛇谐匣平卯麦乡栖骑紊糜议候订店迹秘猿憾田灼堂陆炭蹲部分2;COX回归分析部分2;COX回归分析
部分2;COX回归分析 来自淘豆网m.daumloan.com转载请标明出处.