《绝对值》【教学目标】1、理解、、、体验运用直观知识解决数学问题.【教学重难点】1、重点:绝对值的概念。2、难点:绝对值的概念与两个负数的大小比较【教法与学法】教法指导:创设问题情境,引起学生学习兴趣,让学生通过自主合作,观察、探究知识的产生、发展过程。利用数形结合思想,引入绝对值概念,形象生动。归纳有理数的绝对值时,利用分类讨论思想对正数、0,负数的绝对值进行总结。利用类比的方法,把数轴上数的大小与温度计中度数的高低进行比较,总结出负数比较大小的规律。讲解例题时,让学生先结合所学知识点进行自主探究,然后教师再规范、总结解题过程。学法指导:通过小组交流、合作、自主探究知识的产生、发展过程,探索各个知识点之间的联系,充分利用已学的数形结合思想,并体会分类讨论思想、类比思想方法,以此来加深理解绝对值的概念,以及负数比较大小的规律。【探究课堂】【教学准备】教师:刻度尺,小黑板或多媒体,温度计图片学生:刻度尺【教学过程】一、情境引入问题两辆汽车从同一处O出发,分别向东、西方向行驶10km,到达A、B两处如图,它们的行驶路线相同吗?它们行驶路程的远近(线段OA、OB的长度)相同吗?学生讨论回答教师总结:两辆车的行驶路线相反,它们行驶的路程相同都是10km。我们把上面这个过程看成一个数轴,那么就有数轴上表示-10和10的两个点到原点的距离都是10。数轴上,一个点到原点的距离,是“形”的描述,那么对于“数”是表示一个数的绝对值。下面我们一起来学习今天的新知识——绝对值。二、互动新授问题1如图数轴上有A、B、C、D、四个点,点A表示的数是(),点A到原点的距离是()个长度单位;点B表示的数是(),点B到原点的距离是()个长度单位;点C表示的数是(),点C到原点的距离是()个长度单位;点D表示的数是(),点D到原点的距离是()个长度单位;学生活动:小组合作探究教师总结:点A-22;点B22;点C-;;数学上定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。如上面的-2的绝对值是2;2的绝对值也是2。-。用绝对值符号表示为:︱-2︱=2,︱2︱=2,︱-︱=,︱︱=,显然︱0︱=0设计意图:利用学生故有知识,从特殊到一般来理解绝对值“形”的含义。问题2a的绝对值等于什么?学生活动:根据问题2的结论,来总结任意正、负数a的绝对值怎么表示。师生合作探究:a在这里可能是正数、0、负数,那么我们应该分类来讨论a的绝对值,结果去掉绝对值符号并用含a的式子来表示。我们可以利用绝对值定义写成下面的式子:(1)当a是正数时,︱a︱=_____;(2)当a是负数时,︱a︱=______;(3)当a=0时,︱a︱=____教师总结:一个正数的绝对值等于它本身;一个负数的绝对值等于它的相反数;0的绝对值是0。(1)当a是正数时,︱a︱=a;(2)当a是负数时,︱a︱=-a;(3)当a=0时,︱a︱=0;设计意图:引导学生字母表示数,并引入分类讨论思想。问题3写出下列各数的绝对值:1,-,0,,学生活动:根据绝对值概念,小组合作探究,学生先解答第一个数,教师评讲完再统一格式做后
《绝对值》教学设计 来自淘豆网m.daumloan.com转载请标明出处.