---------------------------------作者:_____________-----------------------------日期::_____________大数据挖掘与分析的关键技术研究---------------------------------------------------------------------编制:---------------------------------------------------------------------日期:大数据挖掘与分析的关键技术研究摘要:云计算、物联网和互联网的快速发展,使得数据量以极快的速度增长,大数据成为研究热点。大数据的价值产生于分析过程,所以大数据挖掘与分析是整个大数据处理流程的核心。本文介绍了大数据数据体量巨大、数据类型繁多、价值密度低、处理速度快的4V特征、以及基于这些特征的大数据挖掘与分析需要解决的关键技术。关键词:大数据大数据分析大数据挖掘可视分析中图分类号:TP391文献标识码:A文章编号:1007-9416(2015)11-0000-00 随着云计算、物联网和互联网等技术的快速发展,各种移动设备、传感网络、电商网站、社交网络时时刻刻都在生成各种各样类型的数据,大数据时代已经到来。大数据即数据体量巨大、数据类型多样、数据的质量低、处理速度迅速的数据。大数据分析的核心是从大量数据中获取有价值的内容,更准确、更深层次的知识,而不是对数据简单的统计和分析。 1大数据的定义与特征大数据已经进入了我们每个人的生活,各行各业都在讨论如何发展和运用大数据,那么什么是大数据,大数据的特征是什么? 大数据是指所涉及的数据规模巨大到无法通过目前主流的软件工具在合理时间内撷取、管理、处理、挖掘这些数据,并整理成为企业经营决策有用的信息。 IBM提出大数据的4V特征,得到了业界的广泛认可。第一,数量(Volume),即数据巨大,从TB级别跃升到PB级别;第二,多样性(Variety),即数据类型繁多,不仅包括传统的格式化数据,还包含来自互联网的大量视频、图片、位置和日志等;第三,速度(Velocity),即处理速度快;第四,价值性(Veracity),即追求高质量的数据。大数据具有4V特征,给人们带来了新的机遇与挑战。 2大数据挖掘与分析的意义在大数据处理的过程中,数据分析是核心,因为大数据的价值全部在数据分析过程中产生。互联网、硬件等技术迅猛发展,加深了人们对数据分析的需求。如果大数据是一种产业,赚钱的重点在于如何提高数据的分析能力,通过分析发现数据的更多潜在的价值。在大数据时代,数据分析是数据价值发现的最重要环节,也是决策的决定性元素。传统的数据分析主要针对结构化数据,且已经形成一整套非常有效果的分析体系。但是在大数据时代,半结构化和非结构化数据量的快速增长,给传统的分析技术带来了巨大的挑战和冲击。大数据分析于传统数据分析有哪些区别呢? 3大数据挖掘与分析的关键技术大数据挖掘与分析的关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据实时处理、大数据可视化和应用等。 。智能感知层重点攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层重点攻克提供大数据服务
大数据挖掘与分析的关键技术研究 来自淘豆网m.daumloan.com转载请标明出处.