模拟退火算法汇报人:(1953)提出,1983年Kirkpatrick等将其应用于组合优化。算法的目的解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。:退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。加温过程——增强粒子的热运动,消除系统原先可能存在的非均匀态;等温过程——对于与环境换热而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态;冷却过程——使粒子热运动减弱并渐趋有序,系统能量逐渐下降,从而得到低能的晶体结构。,利用了物理中固体物质的退火过程与一般优化问题的相似性;从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。,,选定两个能量E1<E2,有模拟退火算法基本思想:在一定温度下,搜索从一个状态随机地变化到另一个状态;随着温度的不断下降直到最低温度,搜索过程以概率1停留在最优解>0<:(1)在同一个温度,分子停留在能量小状态的概率大于停留在能量大状态的概率(2)温度越高,不同能量状态对应的概率相差越小;温度足够高时,各状态对应概率基本相同。(3)随着温度的下降,能量最低状态对应概率越来越大;温度趋于0时,|D|为状态空间D中状态的个数,D0是具有最低能量的状态集合:当温度很高时,每个状态概率基本相同,接近平均值1/|D|;状态空间存在超过两个不同能量时,具有最低能量状态的概率超出平均值1/|D|;当温度趋于0时,分子停留在最低能量状态的概率趋于1。(1953)——以概率接受新状态固体在恒定温度下达到热平衡的过程可以用MonteCarlo方法(计算机随机模拟方法)加以模拟,虽然该方法简单,但必须大量采样才能得到比较精确的结果,计算量很大。若在温度T,当前状态i→新状态j;若Ej<Ei,则接受j为当前状态;否则,若概率p=exp[-(Ej-Ei)/kBT]大于[0,1)区间的随机数,则仍接受状态j为当前状态;若不成立则保留状态i为当前状态。p=exp[-(Ej-Ei)/kBT]在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。
模拟退火算法 ppt课件 来自淘豆网m.daumloan.com转载请标明出处.