--------------------------校验:_____________-----------------------日期:_____________函数的奇偶性-知识点及习题函数的奇偶性一、关于函数的奇偶性的定义一般地,如果对于函数的定义域内任意一个,都有,那么函数就称偶函数;一般地,如果对于函数的定义域内任意一个,都有,那么函数就称奇函数;二、函数的奇偶性的几个性质1、对称性:奇(偶)函数的定义域关于原点对称;2、整体性:奇偶性是函数的整体性质,对定义域内任意一个都必须成立;3、可逆性:是偶函数;奇函数;4、等价性:;;5、奇函数的图像关于原点对称,偶函数的图像关于轴对称;6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。7、设,的定义域分别是,那么在它们的公共定义域上:奇±奇=奇(函数)偶±偶=偶(函数)奇×奇=偶(函数)偶×偶=偶(函数)奇×偶=奇(函数)8、多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)(即偶数项)、复合函数的奇偶性若函数的定义域都是关于原点对称的,那么由的奇偶性得到的奇偶性的规律是:函数奇偶性奇函数奇函数偶函数偶函数奇函数偶函数奇函数偶函数奇函数偶函数偶函数偶函数即当且仅当和都是奇函数时,、函数的奇偶性的判断函数奇偶性的因素有两个:定义域的对称性和数量关系。判断函数奇偶性就是判断函数是否为奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数四种情况。判断函数奇偶性的方法:利用奇、偶函数的定义,主要考查是否与、相等,判断步骤如下:1、定义域是否关于原点对称;若定义域不对称,则为非奇非偶函数;若定义域对称,则有成为奇(偶)函数的可能2、数量关系哪个成立;判断分段函数的奇偶性判断分段函数的奇偶性时,通常利用定义法判断,在函数定义域中,对自变量X的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数,分段函数不是几个函数,而是一个函数,因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断与的关系,首先要特别注意X与—X的范围,然后将它们代入相应段的函数表达式中,与对应不同的表达式,而它们的结果按奇偶函数的定义进行比较。四、关于函数的奇偶性的几个命题的判定命题1:函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。命题2:两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如,,可以看出函数与都是定义域上的函数,它们的差只在区间上有定义且,而在此区间上函数既是奇函数又是偶函数。命题3:是任意函数,那么与都是偶函数。此命题错误。一方面,对于函数不能保证或;另一方面,对于一个任意函数而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数是偶函数。命题4:如果函数满足:,那么函数是奇函数或偶函数。此命题错误。如函数从图像上看,的图像既不关于原点对称,也不关于轴对称,故此函数非奇非偶。命题5
函数的奇偶性-知识点及习题 来自淘豆网m.daumloan.com转载请标明出处.